The Protective Effect of 3-O-Acetyl-11-Keto-Beta Boswellic Acid-Nanostructured Lipid Carriers and Magnesium Oxide Nanoparticles on Experimental Liver Fibrosis

Nalkurthi C, Schroder WA, Melino M, Irvine KM, Nyuydzefe M, Chen W, et al. ROCK2 inhibition attenuates profibrogenic immune cell function to reverse thioacetamide-induced liver fibrosis. JHEP Rep. 2022;4(1):100386. Available from: https://www.sciencedirect.com/science/article/pii/S2589555921001622

Jangra A, Kothari A, Sarma P, Medhi B, Omar BJ, Kaushal K. Recent advancements in antifibrotic therapies for regression of liver fibrosis. Cells. 2022;11(9):1500. Available from: https://www.mdpi.com/2073-4409/11/9/1500

Berumen J, Baglieri J, Kisseleva T, Mekeel K. Liver fibrosis: pathophysiology and clinical implications. WIREs Mech Dis. 2021;13(1):e1499. Available from: https://wires.onlinelibrary.wiley.com/doi/full/10.1002/wsbm.1499

Kim HY, Sakane S, Eguileor A, Carvalho Gontijo Weber R, Lee W, Liu X, et al. The origin and fate of liver myofibroblasts. Cell Mol Gastroenterol Hepatol. 2024;17(1):93–106. Available from: https://www.sciencedirect.com/science/article/pii/S2352345X23001704

Gan L, Jiang Q, Huang D, Wu X, Zhu X, Wang L, et al. A natural small molecule alleviates liver fibrosis by targeting apolipoprotein L2. Nat Chem Biol. 2025;21(1):80–90. Available from: https://www.nature.com/articles/s41589-024-01704-3

Chen L, Guo W, Mao C, Shen J, Wan M. Liver fibrosis: pathological features, clinical treatment and application of therapeutic nanoagents. J Mater Chem B. 2024;12(6):1446–66. Available from: https://pubs.rsc.org/en/content/articlelanding/2023/tb/d3tb02790b

Moeini-Nodeh S, Rahimifard M, Baeeri M, Abdollahi M. Functional improvement in rats' pancreatic islets using magnesium oxide nanoparticles through antiapoptotic and antioxidant pathways. Biol Trace Elem Res. 2017;175(1):146–55. Available from: https://link.springer.com/article/10.1007/s12011-016-0754-8

Wallace M, Hamesch K, Lunova M, Kim Y, Weiskirchen R, Strnad P, et al. Standard operating procedures in experimental liver research: thioacetamide model in mice and rats. Lab Anim. 2015;49(1 Suppl):21–9. Available from: https://journals.sagepub.com/doi/full/10.1177/0023677215573040

Nisa FY, Rahman MA, Rafi MKJ, Khan MAN, Sultana F, Majid M, et al. Biosynthesized magnesium oxide nanoparticles from Tamarindus indica seed attenuate doxorubicin-induced cardiotoxicity by regulating biochemical indexes and linked genes. Biomater Adv. 2023;146:213291. Available from: https://www.sciencedirect.com/science/article/abs/pii/S2772950823000146

Roy NK, Parama D, Banik K, Bordoloi D, Devi AK, Thakur KK, et al. An update on pharmacological potential of boswellic acids against chronic diseases. Int J Mol Sci. 2019;20(17):4101. Available from: https://www.mdpi.com/1422-0067/20/17/4101

Kachouei RA, Doagoo A, Jalilzadeh M, Khatami SH, Rajaei S, Jahan-Abad AJ, et al. Acetyl-11-keto-beta-boswellic acid has therapeutic benefits for NAFLD rat models that were given a high fructose diet by ameliorating hepatic inflammation and lipid metabolism. Inflammation. 2023;46(5):1966–80. Available from: https://link.springer.com/article/10.1007/s10753-023-01853-y

Pu S, Li Y, Liu Q, Zhang X, Chen L, Li R, et al. Inhibition of 5-lipoxygenase in hepatic stellate cells alleviates liver fibrosis. Front Pharmacol. 2021;12:628583. Available from: https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2021.628583/full

Siddiqui MZ. Boswellia serrata, a potential antiinflammatory agent: an overview. Indian J Pharm Sci. 2011;73(3):255–61. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3309643/

Krüger P, Kanzer J, Hummel J, Fricker G, Schubert-Zsilavecz M, Abdel-Tawab M. Permeation of Boswellia extract in the Caco-2 model and possible interactions of its constituents KBA and AKBA with OATP1B3 and MRP2. Eur J Pharm Sci. 2009;36(2):275–84. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0928098708004272

Ale-Ahmad A, Kazemi S, Daraei A, Sepidarkish M, Moghadamnia AA, Parsian H. pH-sensitive nanoformulation of Acetyl-11-Keto-beta-Boswellic Acid (AKBA) as a potential antiproliferative agent in colon carcinogenesis (in vitro and in vivo). BMC Complement Med Ther. 2024;24:289. Available from: https://link.springer.com/article/10.1186/s12645-024-00289-9

Bairwa K, Jachak SM. Development and optimisation of 3-Acetyl-11-keto-β-boswellic acid loaded poly-lactic-co-glycolic acid-nanoparticles with enhanced oral bioavailability and in-vivo anti-inflammatory activity in rats. J Pharm Pharmacol. 2015;67(9):1188–97. Available from: https://academic.oup.com/jpp/article-abstract/67/9/1188/6128233

Goel A, Ahmad FJ, Singh RM, Singh GN. 3-Acetyl-11-keto-β-boswellic acid loaded-polymeric nanomicelles for topical anti-inflammatory and anti-arthritic activity. J Pharm Pharmacol. 2010;62(2):273–8. Available from: https://academic.oup.com/jpp/article-abstract/62/2/273/6135770

Khan A, Al-Harrasi A, Rehman NU, Sarwar R, Ahmad T, Ghaffar R, et al. Loading AKBA on surface of silver nanoparticles to improve their sedative-hypnotic and anti-inflammatory efficacies. Nanomedicine. 2019;14(21):2783–98. Available from: https://www.tandfonline.com/doi/abs/10.2217/nnm-2019-0211

Su X, Zhong H, Zeng Y, Zhang Y, Zhang B, Guo W, et al. Dual-ligand-functionalized nanostructured lipid carriers as a novel dehydrocavidine delivery system for liver fibrosis therapy. Colloids Surf B Biointerfaces. 2025;246:114376. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0927776524006350?via%3Dihub

Goel R, Mishra R, Singh N, Rajora A, Singh R, Gaur PK. Nanostructured lipid carriers: enhancing herbal medicine delivery. In: Lipid Based Nanocarriers for Drug Delivery. 2024. p. 367. Available from: https://www.researchgate.net/profile/Neelam-Singh-38/publication/382306507_'Nanostructured_Lipid_Carriers_Enhancing_Herbal_Medicine_Delivery'/links/66cb21b7c2eaa5002315fbf2/Nanostructured-Lipid-Carriers-Enhancing-Herbal-Medicine-Delivery.pdf#page=375

Bartneck M, Warzecha KT, Tacke F. Therapeutic targeting of liver inflammation and fibrosis by nanomedicine. Hepatobiliary Surg Nutr. 2014;3(6):364–76. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC4273112/

Desai PP, Date AA, Patravale VB. Overcoming poor oral bioavailability using nanoparticle formulations–opportunities and limitations. Drug Discov Today Technol. 2012;9(2):e87–95. Available from: https://www.sciencedirect.com/science/article/abs/pii/S1740674911000345

He C, Yin L, Tang C, Yin C. Multifunctional polymeric nanoparticles for oral delivery of TNF-α siRNA to macrophages. Biomaterials. 2013;34(11):2843–54. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0142961213000495

Ajiboye AL, Nandi U, Galli M, Trivedi V. Olanzapine loaded nanostructured lipid carriers via high shear homogenization and ultrasonication. Sci Pharm. 2021;89(2):25. Available from: https://www.mdpi.com/2218-0532/89/2/25

Alkreathy HM, Esmat A. Lycorine ameliorates thioacetamide-induced hepatic fibrosis in rats: Emphasis on antioxidant, anti-inflammatory, and STAT3 inhibition effects. Pharmaceuticals. 2022;15(3):369. Available from: https://www.mdpi.com/1424-8247/15/3/369

Mazaheri N, Naghsh N, Karimi A, Salavati H. In vivo toxicity investigation of magnesium oxide nanoparticles in rat for environmental and biomedical applications. Iran J Biotechnol. 2019;17(1):e1543. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC6697860/

Sharawy MH, El‐Awady MS, Makled MN. Protective effects of paclitaxel on thioacetamide‐induced liver fibrosis in a rat model. J Biochem Mol Toxicol. 2021;35(5):e22745. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/jbt.22745

ElBaset MA, Salem RS, Ayman F, Ayman N, Shaban N, Afifi SM, et al. Effect of empagliflozin on thioacetamide-induced liver injury in rats: role of AMPK/SIRT-1/HIF-1α pathway in halting liver fibrosis. Antioxidants. 2022;11(11):2152. Available from: https://www.mdpi.com/2076-3921/11/11/2152

Suvarna KS, Layton C, Bancroft JD. Bancroft's Theory and Practice of Histological Techniques. 8th ed. London: Elsevier Health Sciences; 2018.

Mohamadnejad M, Tavangar SM, Sotoudeh M, Kosari F, Khosravi M, Geramizadeh B, et al. Histopathological study of chronic hepatitis B: a comparative study of Ishak and METAVIR scoring systems. Int J Organ Transplant Med. 2010;1(4):171–6. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC4089240/

Alavifard H, Mazhari S, Meyfour A, Tokhanbigli S, Ghavami S, Zali MR, et al. Imatinib suppresses activation of hepatic stellate cells by targeting STAT3/IL-6 pathway through miR-124. Cell Biol Int. 2023;47(5):969–80. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/cbin.11992

Ye J, Chen J, Li Y, Sun L, Lu H. Hepatocyte-specific knockout of HIF-2α cannot alleviate carbon tetrachloride-induced liver fibrosis in mice. PeerJ. 2023;11:e15191. Available from: https://peerj.com/articles/15191/

Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):57. Available from: https://www.mdpi.com/1999-4923/10/2/57

Domingos RF, Tufenkji N, Wilkinson KJ. Aggregation of titanium dioxide nanoparticles: role of a fulvic acid. Environ Sci Technol. 2009;43(5):1282–6. Available from: https://pubs.acs.org/doi/abs/10.1021/es8023594

Bhattacharjee S. DLS and zeta potential–what they are and what they are not? J Control Release. 2016;235:337–51. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0168365916303832

Terrault NA, Francoz C, Berenguer M, Charlton M, Heimbach J. Liver transplantation 2023: status report, current and future challenges. Clin Gastroenterol Hepatol. 2023;21(8):2150–66. Available from: https://www.sciencedirect.com/science/article/pii/S1542356523002781

Enciso N, Amiel J, Fabián-Domínguez F, Pando J, Rojas N, Cisneros-Huamaní C, et al. Model of liver fibrosis induction by thioacetamide in rats for regenerative therapy studies. Anal Cell Pathol (Amst). 2022;2022:2841894. Available from: https://onlinelibrary.wiley.com/doi/full/10.1155/2022/2841894

Bao YL, Wang L, Pan HT, Zhang TR, Chen YH, Xu SJ, et al. Animal and organoid models of liver fibrosis. Front Physiol. 2021;12:666138. Available from: https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2021.666138/full

Norasingha A, Pradidarcheep W, Chayaburakul K. Chronological production of thioacetamide-induced cirrhosis in the rat with no mortality. J Med Assoc Thai. 2012;95(Suppl 7):S173–7. Available from: https://europepmc.org/article/med/23964462

Mittag A, Schneider T, Westermann M, Glei M. Toxicological assessment of magnesium oxide nanoparticles in HT29 intestinal cells. Arch Toxicol. 2019;93(6):1491–1500. Available from: https://link.springer.com/article/10.1007/s00204-019-02451-

Majeed SI, Mohammed SM, Mohammad AM. Bioaccumulation and evaluation of magnesium oxide nanoparticles toxicity and combination effects of vitamin E and C with it on exposed male rats. Kurdistan J Appl Res. 2023:1–10. Available from: https://mail.spu.edu.iq/kjar/index.php/kjar/article/view/813

Ammon H. Modulation of the immune system by Boswellia serrata extracts and boswellic acids. Phytomedicine. 2010;17(11):862–7. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0944711310000620

Takada Y, Ichikawa H, Badmaev V, Aggarwal BB. Acetyl-11-keto-β-boswellic acid potentiates apoptosis, inhibits invasion, and abolishes osteoclastogenesis by suppressing NF-κB and NF-κB-regulated gene expression. J Immunol. 2006;176(5):3127–40. Available from: https://journals.aai.org/jimmunol/article/176/5/3127/73226

Addissouky TA, Ali MM, El Sayed IET, Wang Y, El Baz A, Elarabany N, et al. Preclinical promise and clinical challenges for innovative therapies targeting liver fibrogenesis. Arch Gastroenterol Res. 2023;4(1):14–23. Available from: https://www.scientificarchives.com/abstract/preclinical-promise-and-clinical-challenges-for-innovative-therapies-targeting-liver-fibrogenesis

Saberi A, Baltatu MS, Vizureanu P. Recent advances in magnesium–magnesium oxide nanoparticle composites for biomedical applications. Bioengineering. 2024;11(5):508. Available from: https://www.mdpi.com/2306-5354/11/5/508

Stefanova D, Yordanov Y, Bogdanova R, Voycheva C, Tzankov B, Popova T, et al. In vitro evaluation of the safety and antineoplastic effects in gastrointestinal tumors of nanostructured lipid carriers loaded with berberine. Pharmaceutics. 2025;17(3):331. Available from: https://www.mdpi.com/1999-4923/17/3/331

Duong VA, Nguyen TTL, Maeng HJ. Preparation of solid lipid nanoparticles and nanostructured lipid carriers for drug delivery and the effects of preparation parameters of solvent injection method. Molecules. 2020;25(20):4781. Available from: https://www.mdpi.com/1420-3049/25/20/4781

Ahmad S, Idris RAM, Wan Hanaffi WN, Perumal K, Boer JC, Plebanski M, et al. Cancer nanomedicine and immune system—interactions and challenges. Front Nanotechnol. 2021;3:681305. Available from: https://www.frontiersin.org/articles/10.3389/fnano.2021.681305/full

Gu L, Zhang F, Wu J, Zhuge Y. Nanotechnology in drug delivery for liver fibrosis. Front Mol Biosci. 2022;8:804396. Available from: https://www.frontiersin.org/journals/molecular-biosciences/articles/10.3389/fmolb.2021.804396/full

Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol. 2021;18(3):151–66. Available from: https://www.nature.com/articles/s41575-020-00372-7

Comments (0)

No login
gif