Devarbhavi H, Asrani SK, Arab JP, Nartey YA, Pose E, Kamath PS. Global burden of liver disease: 2023 update. J Hepatol. 2023;79(2):516–37. https://doi.org/10.1016/j.jhep.2023.03.017.
Shield K, et al. National, regional, and global burdens of disease from 2000 to 2016 attributable to alcohol use: a comparative risk assessment study. Lancet Public Health. 2020;5(1):e51–61. https://doi.org/10.1016/s2468-2667(19)30231-2.
Brodowski L, Schröder-Heurich B, Kipke B, Schmidt C, von Kaisenberg CS, von Versen-Höynck F. Low ethanol concentrations promote endothelial progenitor cell capacity and reparative function. Cardiovasc Ther. 2020;2020:4018478. https://doi.org/10.1155/2020/4018478.
Article PubMed PubMed Central Google Scholar
Xue L, et al. Appropriate dose of ethanol exerts anti-senescence and anti-atherosclerosis protective effects by activating ALDH2. Biochem Biophys Res Commun. 2019;512(2):319–25. https://doi.org/10.1016/j.bbrc.2019.03.037.
Article PubMed CAS Google Scholar
Biddinger KJ, et al. Association of Habitual Alcohol Intake with Risk of cardiovascular disease. JAMA Netw Open. 2022;5(3):e223849. https://doi.org/10.1001/jamanetworkopen.2022.3849.
Article PubMed PubMed Central Google Scholar
Im PK, et al. Alcohol consumption and risks of more than 200 diseases in Chinese men. Nat Med. 2023;29(6):1476–86. https://doi.org/10.1038/s41591-023-02383-8.
Article PubMed PubMed Central CAS Google Scholar
Jung MH, Shin ES, Ihm SH, Jung JG, Lee HY, Kim CH. The effect of alcohol dose on the development of hypertension in Asian and Western men: systematic review and meta-analysis. Korean J Intern Med. 2020;35(4):906–16. https://doi.org/10.3904/kjim.2019.016.
Article PubMed CAS Google Scholar
Alcohol use and burden for 195 countries and territories, 1990-2016: a systematic analysis for the global burden of disease study 2016. Lancet. 2018;392(10152):1015–35. https://doi.org/10.1016/s0140-6736(18)31310-2.
Zhang J, et al. The role of aldehyde dehydrogenase 2 in cardiovascular disease. Nat Rev Cardiol. 2023;20(7):495–509. https://doi.org/10.1038/s41569-023-00839-5.
Article PubMed CAS Google Scholar
Louvet A, et al. Low alcohol consumption influences outcomes in individuals with alcohol-related compensated cirrhosis in a French multicenter cohort. J Hepatol. 2023;78(3):501–12. https://doi.org/10.1016/j.jhep.2022.11.013.
Cecchini M, et al. Alcohol intake and risk of hypertension: a systematic review and dose-response Meta-analysis of nonexperimental cohort studies. Hypertension. 2024;81(8):1701–15. https://doi.org/10.1161/hypertensionaha.124.22703.
Article PubMed CAS Google Scholar
Erol A, Karpyak VM. Sex and gender-related differences in alcohol use and its consequences: contemporary knowledge and future research considerations. Drug Alcohol Depend. 2015;156:1–13. https://doi.org/10.1016/j.drugalcdep.2015.08.023.
Bakris G, Ali W, Parati G. ACC/AHA versus ESC/ESH on hypertension guidelines: JACC guideline comparison. J Am Coll Cardiol. 2019;73(23):3018–26. https://doi.org/10.1016/j.jacc.2019.03.507.
Hyun J, Han J, Lee C, Yoon M, Jung Y. Pathophysiological aspects of alcohol metabolism in the liver. Int J Mol Sci. 2021;22(11) https://doi.org/10.3390/ijms22115717.
Rattan P, Shah VH. Review article: current and emerging therapies for acute alcohol-associated hepatitis. Aliment Pharmacol Ther. 2022; https://doi.org/10.1111/apt.16969.
Crabb DW, Im GY, Szabo G, Mellinger JL, Lucey MR. Diagnosis and treatment of alcohol-associated liver diseases: 2019 practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2020;71(1):306–33. https://doi.org/10.1002/hep.30866.
Kezer CA, Simonetto DA, Shah VH. Sex differences in alcohol consumption and alcohol-associated liver disease. Mayo Clin Proc. 2021;96(4):1006–16. https://doi.org/10.1016/j.mayocp.2020.08.020.
Frezza M, di Padova C, Pozzato G, Terpin M, Baraona E, Lieber CS. High blood alcohol levels in women. The role of decreased gastric alcohol dehydrogenase activity and first-pass metabolism. N Engl J Med. 1990;322(2):95–9. https://doi.org/10.1056/nejm199001113220205.
Article PubMed CAS Google Scholar
Greaves L, Poole N, Brabete AC. Sex, gender, and alcohol use: implications for women and low-risk drinking guidelines. Int J Environ Res Public Health. 2022;19(8) https://doi.org/10.3390/ijerph19084523.
Zaso MJ, Goodhines PA, Wall TL, Park A. Meta-analysis on associations of alcohol metabolism genes with alcohol use disorder in east Asians. Alcohol Alcohol. 2019;54(3):216–24. https://doi.org/10.1093/alcalc/agz011.
Article PubMed PubMed Central CAS Google Scholar
Wall TL, Luczak SE, Hiller-Sturmhöfel S. Biology, genetics, and environment: underlying factors influencing alcohol metabolism. Alcohol Res. 2016;38(1):59–68.
PubMed PubMed Central Google Scholar
Liu T, Zhang F, Feng Y, Han P, Gao Y. Alcohol-metabolizing enzymes, liver diseases and Cancer. Semin Liver Dis. 2025; https://doi.org/10.1055/a-2551-3320.
Jung YS, et al. ERRγ-inducible FGF23 promotes alcoholic liver injury through enhancing CYP2E1 mediated hepatic oxidative stress. Redox Biol. 2024;71:103107. https://doi.org/10.1016/j.redox.2024.103107.
Article PubMed PubMed Central CAS Google Scholar
Yao F, Abdel-Rahman AA. Aldehyde dehydrogenase inhibition ameliorates cardiac dysfunction and exacerbates hypotension caused by alcohol in female rats. Alcohol Clin Exp Res. 2020;44(1):45–55. https://doi.org/10.1111/acer.14225.
Article PubMed CAS Google Scholar
El-Mas MM, Abdel-Rahman AA. Role of alcohol oxidative metabolism in its cardiovascular and autonomic effects. Adv Exp Med Biol. 2019;1193:1–33. https://doi.org/10.1007/978-981-13-6260-6_1.
Article PubMed PubMed Central CAS Google Scholar
Allameh A, Niayesh-Mehr R, Aliarab A, Sebastiani G, Pantopoulos K. Oxidative stress in liver pathophysiology and disease. Antioxidants (Basel). 2023;12(9) https://doi.org/10.3390/antiox12091653.
Amponsah-Offeh M, Diaba-Nuhoho P, Speier S, Morawietz H. Oxidative stress, antioxidants and hypertension. Antioxidants (Basel). 2023;12(2) https://doi.org/10.3390/antiox12020281.
Phillips SA, Osborn K, Hwang CL, Sabbahi A, Piano MR. Ethanol induced oxidative stress in the vasculature: friend or foe. Curr Hypertens Rev. 2020;16(3):181–91. https://doi.org/10.2174/1573402115666190325124622.
Article PubMed PubMed Central CAS Google Scholar
Cuzzocrea S, Mazzon E, Dugo L, Di Paola R, Caputi AP, Salvemini D. Superoxide: a key player in hypertension. FASEB J. 2004;18(1):94–101. https://doi.org/10.1096/fj.03-0428com.
Article PubMed CAS Google Scholar
Schulz E, Gori T, Münzel T. Oxidative stress and endothelial dysfunction in hypertension. Hypertens Res. 2011;34(6):665–73. https://doi.org/10.1038/hr.2011.39.
Article PubMed CAS Google Scholar
Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87(1):315–424. https://doi.org/10.1152/physrev.00029.2006.
Article PubMed CAS Google Scholar
Meyer MR, Haas E, Barton M. Gender differences of cardiovascular disease: new perspectives for estrogen receptor signaling. Hypertension. 2006;47(6):1019–26. https://doi.org/10.1161/01.HYP.0000223064.62762.0b.
Article PubMed CAS Google Scholar
Meyer MR, Prossnitz ER, Barton M. The G protein-coupled estrogen receptor GPER/GPR30 as a regulator of cardiovascular function. Vasc Pharmacol. 2011;55(1–3):17–25. https://doi.org/10.1016/j.vph.2011.06.003.
Vitale C, Mendelsohn ME, Rosano GM. Gender differences in the cardiovascular effect of sex hormones. Nat Rev Cardiol. 2009;6(8):532–42. https://doi.org/10.1038/nrcardio.2009.105.
Comments (0)