Biomarkers for Predicting Blood Pressure Response to Renal Denervation

Fuchs FD, Whelton PK. High blood pressure and cardiovascular disease. Hypertension. 2020;75(2):285–92. https://doi.org/10.1161/HYPERTENSIONAHA.119.14240.

Article  CAS  PubMed  Google Scholar 

Boehme AK, Esenwa C, Elkind MSV. Stroke risk factors, genetics, and prevention. Circ Res. 2017;120(3):472–95. https://doi.org/10.1161/CIRCRESAHA.116.308398.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fowkes FGR, Rudan D, Rudan I, et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet. 2013;382(9901):1329–40. https://doi.org/10.1016/S0140-6736(13)61249-0.

Article  PubMed  Google Scholar 

Bui AL, Horwich TB, Fonarow GC. Epidemiology and risk profile of heart failure. Nat Rev Cardiol. 2011;8(1):30–41. https://doi.org/10.1038/nrcardio.2010.165.

Article  PubMed  Google Scholar 

Chen TK, Knicely DH, Grams ME. Chronic Kidney Disease Diagnosis and Management: A Review. JAMA. 2019;322(13):1294–304. https://doi.org/10.1001/jama.2019.14745.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou B, Perel P, Mensah GA, Ezzati M. Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension. Nat Rev Cardiol. 2021;18(11):785–802. https://doi.org/10.1038/s41569-021-00559-8.

Article  PubMed  PubMed Central  Google Scholar 

Noubiap JJ, Nansseu JR, Nyaga UF, Sime PS, Francis I, Bigna JJ. Global prevalence of resistant hypertension: a meta-analysis of data from 3.2 million patients. Heart (British Cardiac Society). 2019;105(2). https://doi.org/10.1136/heartjnl-2018-313599

Grassi G, Mark A, Esler M. The sympathetic nervous system alterations in human hypertension. Circ Res. 2015;116(6):976–90. https://doi.org/10.1161/CIRCRESAHA.116.303604.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Esler MD, Osborn JW, Schlaich MP. Sympathetic Pathophysiology in Hypertension Origins: The Path to Renal Denervation. Hypertension. 2024;81(6):1194–205. https://doi.org/10.1161/HYPERTENSIONAHA.123.21715.

Article  CAS  PubMed  Google Scholar 

Azizi M, Schmieder RE, Mahfoud F, et al. Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. Lancet. 2018;391(10137):2335–45. https://doi.org/10.1016/S0140-6736(18)31082-1.

Article  PubMed  Google Scholar 

Fengler K, Reimann P, Rommel K-P, et al. Comparison of Long-Term Outcomes for Responders Versus Non-Responders Following Renal Denervation in Resistant Hypertension. J Am Heart Assoc. 2021;10(21):e022429. https://doi.org/10.1161/JAHA.121.022429.

Article  PubMed  PubMed Central  Google Scholar 

Wells GA, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses [Available from: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp

Padmanabhan S, Dominiczak AF. Genomics of hypertension: the road to precision medicine. Nat Rev Cardiol. 2021;18(4):235–50. https://doi.org/10.1038/s41569-020-00466-4.

Article  CAS  PubMed  Google Scholar 

Manosroi W, Williams GH. Genetics of Human Primary Hypertension: Focus on Hormonal Mechanisms. Endocr Rev. 2019;40(3):825–56. https://doi.org/10.1210/er.2018-00071.

Article  PubMed  Google Scholar 

Watkins WS, Hunt SC, Williams GH, et al. Genotype-phenotype analysis of angiotensinogen polymorphisms and essential hypertension: the importance of haplotypes. J Hypertens. 2010;28(1):65–75. https://doi.org/10.1097/HJH.0b013e328332031a.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hopkins PN, Hunt SC, Jeunemaitre X, et al. Angiotensinogen genotype affects renal and adrenal responses to angiotensin II in essential hypertension. Circulation. 2002;105(16):1921–7.

Article  CAS  PubMed  Google Scholar 

Hilgers KF, Delles C, Veelken R, Schmieder RE. Angiotensinogen gene core promoter variants and non-modulating hypertension. Hypertension. 2001;38(6):1250–4.

Article  CAS  PubMed  Google Scholar 

Sun B, Williams JS, Pojoga L, et al. Renin gene polymorphism: its relationship to hypertension, renin levels and vascular responses. J Renin Angiotensin Aldosterone Syst. 2011;12(4):564–71. https://doi.org/10.1177/1470320311405873.

Article  CAS  PubMed  Google Scholar 

Mansego ML, Redon J, Marin R, et al. Renin polymorphisms and haplotypes are associated with blood pressure levels and hypertension risk in postmenopausal women. J Hypertens. 2008;26(2):230–7. https://doi.org/10.1097/HJH.0b013e3282f29865.

Article  CAS  PubMed  Google Scholar 

Ott C, Schneider MP, Delles C, Schlaich MP, Hilgers KF, Schmieder RE. Association of (pro)renin receptor gene polymorphism with blood pressure in Caucasian men. Pharmacogenet Genomics. 2011;21(6):347–9. https://doi.org/10.1097/FPC.0b013e328344cdd2.

Article  CAS  PubMed  Google Scholar 

Pojoga L, Kolatkar NS, Williams JS, et al. Beta-2 adrenergic receptor diplotype defines a subset of salt-sensitive hypertension. Hypertension. 2006;48(5):892–900.

Article  CAS  PubMed  Google Scholar 

Thomsen M, Dahl M, Tybjaerg-Hansen A, Nordestgaard BG. β2 -adrenergic receptor Thr164IIe polymorphism, blood pressure and ischaemic heart disease in 66 750 individuals. J Intern Med. 2012;271(3):305–14. https://doi.org/10.1111/j.1365-2796.2011.02447.x.

Article  CAS  PubMed  Google Scholar 

Iwai N, Kajimoto K, Tomoike H, Takashima N. Polymorphism of CYP11B2 determines salt sensitivity in Japanese. Hypertension. 2007;49(4):825–31.

Article  CAS  PubMed  Google Scholar 

Rossi E, Regolisti G, Perazzoli F, et al. 344C/T polymorphism of CYP11B2 gene in Italian patients with idiopathic low renin hypertension. Am J Hypertens. 2001;14(9 Pt 1):934–41.

Article  CAS  PubMed  Google Scholar 

Jinmin L, Jianmin L, Shuqin Z, Xueqiu L, Shuyi T. The polymorphism of angiotensin-receptor gene A1166C in familial hypertension and its distribution in the Han Yellow race of China. Saudi Med J. 2013;34(10):1007–12.

PubMed  Google Scholar 

Delles C, Schmieder RE, Daly R, et al. Response of blood pressure to renal denervation is not associated with genetic variants. Hypertension. 2024. https://doi.org/10.1161/HYPERTENSIONAHA.124.23393.

Article  PubMed  Google Scholar 

Mani A. Update in genetic and epigenetic causes of hypertension. Cell Mol Life Sci. 2024;81(1):201. https://doi.org/10.1007/s00018-024-05220-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takeda Y, Demura M, Yoneda T, Takeda Y. Epigenetic Regulation of the Renin-Angiotensin-Aldosterone System in Hypertension. Int J Mol Sci. 2024;25(15). https://doi.org/10.3390/ijms25158099.

Liang M. Epigenetic Mechanisms and Hypertension. Hypertension. 2018;72(6):1244–54. https://doi.org/10.1161/HYPERTENSIONAHA.118.11171.

Article  CAS  PubMed  Google Scholar 

Emschermann F, Zuern CS, Patzelt J, et al. Resistance to renal denervation therapy - Identification of underlying mechanisms by analysis of differential DNA methylation. Int J Cardiol Heart Vasc. 2016;11:80–6. https://doi.org/10.1016/j.ijcha.2016.04.001.

Article  PubMed  PubMed Central  Google Scholar 

Koba S, Kumada N, Narai E, Kataoka N, Nakamura K, Watanabe T. A brainstem monosynaptic excitatory pathway that drives locomotor activities and sympathetic cardiovascular responses. Nat Commun. 2022;13(1):5079. https://doi.org/10.1038/s41467-022-32823-x.

Article  CAS  PubMed 

Comments (0)

No login
gif