Cohen SP, Vase L, Hooten WM (2021) Chronic pain: an update on burden, best practices, and new advances. Lancet 397(10289):2082–2097. https://doi.org/10.1016/s0140-6736(21)00393-7
Romero-Reyes M, Arman S, Teruel A, Kumar S, Hawkins J, Akerman S (2023) Pharmacological management of orofacial pain. Drugs 83(14):1269–1292. https://doi.org/10.1007/s40265-023-01927-z
Huang X, Zeng J, Zhao N, Fan L, Ruan D, Wang J, Hong X, Yu C (2022) Experience of using a smartphone WeChat applet for dental anxiety assessment and preoperative evaluation: a nationwide multicenter study. Front Public Health 10:900899. https://doi.org/10.3389/fpubh.2022.900899
Article PubMed PubMed Central Google Scholar
Banigo A, Watson D, Ram B, Ah-See K (2018) Orofacial pain Bmj 361:k1517. https://doi.org/10.1136/bmj.k1517
Pigg M, Nixdorf DR, Law AS, Renton T, Sharav Y, Baad-Hansen L, List T (2021) New international classification of orofacial pain: what is in it for endodontists? J Endod 47(3):345–357. https://doi.org/10.1016/j.joen.2020.12.002
International Classification of Orofacial Pain, 1st edition (ICOP) (2020). Cephalalgia 40 (2):129–221. https://doi.org/10.1177/0333102419893823
Matsuka Y (2022) Orofacial pain: molecular mechanisms, diagnosis, and treatment 2021. Int J Mol Sci 23 (9). https://doi.org/10.3390/ijms23094826
Ye Y, Salvo E, Romero-Reyes M, Akerman S, Shimizu E, Kobayashi Y, Michot B, Gibbs J (2021) Glia and orofacial pain: progress and future directions. Int J Mol Sci 22 (10). https://doi.org/10.3390/ijms22105345
Asano S, Hayashi Y, Iwata K, Okada-Ogawa A, Hitomi S, Shibuta I, Imamura Y, Shinoda M (2020) Microglia-astrocyte communication via c1q contributes to orofacial neuropathic pain associated with infraorbital nerve injury. Int J Mol Sci 21 (18). https://doi.org/10.3390/ijms21186834
Mo SY, Bai SS, Xu XX, Liu Y, Fu KY, Sessle BJ, Cao Y, Xie QF (2022) Astrocytes in the rostral ventromedial medulla contribute to the maintenance of oro-facial hyperalgesia induced by late removal of dental occlusal interference. J Oral Rehabil 49(2):207–218. https://doi.org/10.1111/joor.13211
Article CAS PubMed Google Scholar
Guan Z, Kuhn JA, Wang X, Colquitt B, Solorzano C, Vaman S, Guan AK, Evans-Reinsch Z et al (2016) Injured sensory neuron-derived CSF1 induces microglial proliferation and DAP12-dependent pain. Nat Neurosci 19(1):94–101. https://doi.org/10.1038/nn.4189
Tsuda M, Inoue K, Salter MW (2005) Neuropathic pain and spinal microglia: a big problem from molecules in “small” glia. Trends Neurosci 28(2):101–107. https://doi.org/10.1016/j.tins.2004.12.002
Article CAS PubMed Google Scholar
Biber K, Tsuda M, Tozaki-Saitoh H, Tsukamoto K, Toyomitsu E, Masuda T, Boddeke H, Inoue K (2011) Neuronal CCL21 up-regulates microglia P2X4 expression and initiates neuropathic pain development. Embo j 30(9):1864–1873. https://doi.org/10.1038/emboj.2011.89
Article CAS PubMed PubMed Central Google Scholar
Pérez-Flores G, Lévesque SA, Pacheco J, Vaca L, Lacroix S, Pérez-Cornejo P, Arreola J (2015) The P2X7/P2X4 interaction shapes the purinergic response in murine macrophages. Biochem Biophys Res Commun 467(3):484–490. https://doi.org/10.1016/j.bbrc.2015.10.025
Article CAS PubMed Google Scholar
Liu T, Gao YJ, Ji RR (2012) Emerging role of Toll-like receptors in the control of pain and itch. Neurosci Bull 28(2):131–144. https://doi.org/10.1007/s12264-012-1219-5
Article CAS PubMed PubMed Central Google Scholar
Nguyen E, Grajales-Reyes JG, Gereau RWt, Ross SE, (2023) Cell type-specific dissection of sensory pathways involved in descending modulation. Trends Neurosci 46(7):539–550. https://doi.org/10.1016/j.tins.2023.04.002
De Preter CC, Heinricher MM (2023) Direct and indirect nociceptive input from the trigeminal dorsal horn to pain-modulating neurons in the rostral ventromedial medulla. J Neurosci 43(32):5779–5791. https://doi.org/10.1523/jneurosci.0680-23.2023
Article CAS PubMed PubMed Central Google Scholar
François A, Low SA, Sypek EI, Christensen AJ, Sotoudeh C, Beier KT, Ramakrishnan C, Ritola KD et al (2017) A brainstem-spinal cord inhibitory circuit for mechanical pain modulation by GABA and enkephalins. Neuron 93(4):822-839.e826. https://doi.org/10.1016/j.neuron.2017.01.008
Peng B, Jiao Y, Zhang Y, Li S, Chen S, Xu S, Gao P, Fan Y et al (2023) Bulbospinal nociceptive ON and OFF cells related neural circuits and transmitters. Front Pharmacol 14:1159753. https://doi.org/10.3389/fphar.2023.1159753
Article CAS PubMed PubMed Central Google Scholar
Fields HL, Heinricher MM, Mason P (1991) Neurotransmitters in nociceptive modulatory circuits. Annu Rev Neurosci 14:219–245. https://doi.org/10.1146/annurev.ne.14.030191.001251
Article CAS PubMed Google Scholar
Du Y, Yu K, Yan C, Wei C, Zheng Q, Qiao Y, Liu Y, Han J et al (2022) The contributions of Mu-opioid receptors on glutamatergic and GABAergic neurons to analgesia induced by various stress intensities. eNeuro 9 (3). https://doi.org/10.1523/eneuro.0487-21.2022
Xue Y, Mo S, Li Y, Cao Y, Xu X, Xie Q (2024) Dissecting neural circuits from rostral ventromedial medulla to spinal trigeminal nucleus bidirectionally modulating craniofacial mechanical sensitivity. Prog Neurobiol 232:102561. https://doi.org/10.1016/j.pneurobio.2023.102561
Article CAS PubMed Google Scholar
Bagley EE, Ingram SL (2020) Endogenous opioid peptides in the descending pain modulatory circuit. Neuropharmacology 173:108131. https://doi.org/10.1016/j.neuropharm.2020.108131
Article CAS PubMed PubMed Central Google Scholar
Nguyen E, Smith KM, Cramer N, Holland RA, Bleimeister IH, Flores-Felix K, Silberberg H, Keller A et al (2022) Medullary kappa-opioid receptor neurons inhibit pain and itch through a descending circuit. Brain 145(7):2586–2601. https://doi.org/10.1093/brain/awac189
Article PubMed PubMed Central Google Scholar
Mills EP, Di Pietro F, Alshelh Z, Peck CC, Murray GM, Vickers ER, Henderson LA (2018) Brainstem pain-control circuitry connectivity in chronic neuropathic pain. J Neurosci 38(2):465–473. https://doi.org/10.1523/jneurosci.1647-17.2017
Article CAS PubMed PubMed Central Google Scholar
Colonna M, Butovsky O (2017) Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol 35:441–468. https://doi.org/10.1146/annurev-immunol-051116-052358
Article CAS PubMed PubMed Central Google Scholar
Sellgren CM, Gracias J, Watmuff B, Biag JD, Thanos JM, Whittredge PB, Fu T, Worringer K et al (2019) Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat Neurosci 22(3):374–385. https://doi.org/10.1038/s41593-018-0334-7
Article CAS PubMed PubMed Central Google Scholar
Taddei RN, Perbet R, Mate de Gerando A, Wiedmer AE, Sanchez-Mico M, Connors Stewart T, Gaona A, Melloni A, et al (2023) Tau oligomer-containing synapse elimination by microglia and astrocytes in Alzheimer disease. JAMA Neurol 80(11):1209–1221. https://doi.org/10.1001/jamaneurol.2023.3530
Wilton DK, Mastro K, Heller MD, Gergits FW, Willing CR, Fahey JB, Frouin A, Daggett A et al (2023) Microglia and complement mediate early corticostriatal synapse loss and cognitive dysfunction in Huntington’s disease. Nat Med 29(11):2866–2884. https://doi.org/10.1038/s41591-023-02566-3
Lui H, Zhang J, Makinson SR, Cahill MK, Kelley KW, Huang HY, Shang Y, Oldham MC et al (2016) Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell 165(4):921–935. https://doi.org/10.1016/j.cell.2016.04.001
Wang C, Yue H, Hu Z, Shen Y, Ma J, Li J, Wang XD, Wang L et al (2020) Microglia mediate forgetting via complement-dependent synaptic elimination. Science 367(6478):688–694. https://doi.org/10.1126/science.aaz2288
Article CAS PubMed Google Scholar
Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, Merry KM, Shi Q et al (2016) Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352(6286):712–716. https://doi.org/10.1126/science.aad8373
Article CAS PubMed PubMed Central Google Scholar
Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME et al (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74(4):691–705. https://doi.org/10.1016/j.neuron.2012.03.026
Article CAS PubMed PubMed Central Google Scholar
Wright-Jin EC, Gutmann DH (2019) Microglia as dynamic cellular mediators of brain function. Trends Mol Med 25(11):967–979. https://doi.org/10.1016/j.molmed.2019.08.013
Article PubMed PubMed Central Google Scholar
Cserép C, Pósfai B, Dénes Á (2021) Shaping neuronal fate: functional heterogeneity of direct microglia-neuron interactions. Neuron 109(2):222–240. https://doi.org/10.1016/j.neuron.2020.11.007
Comments (0)