Virtual RNA Inference from Spatial Transcriptomics Reveals Histology-Associated Pathways that Stratify Metastasis Risk in Colorectal Cancer

Abstract

Colorectal cancer (CRC) remains a major health concern, with over 150,000 new diagnoses and more than 50,000 deaths annually in the United States, underscoring an urgent need for improved screening, prognostication, disease management, and therapeutic approaches. The tumor microenvironment (TME)—comprising cancerous and immune cells interacting within the tumor’s spatial architecture—plays a critical role in disease progression and treatment outcomes, reinforcing its importance as a prognostic marker for metastasis and recurrence risk. However, traditional methods for TME characterization, such as bulk transcriptomics and multiplex protein assays, lack sufficient spatial resolution. Although spatial transcriptomics (ST) allows for the high-resolution mapping of whole transcriptomes at near-cellular resolution, current ST technologies (e.g., Visium, Xenium) are limited by high costs, low throughput, and issues with reproducibility, preventing their widespread application in large-scale molecular epidemiology studies. In this study, we refined and implemented Virtual RNA Inference (VRI) to derive ST-level molecular information directly from hematoxylin and eosin (H&E)-stained tissue images. Our VRI models were trained on the largest matched CRC ST dataset to date, comprising 45 patients and more than 300,000 Visium spots from primary tumors. Using state-of-the-art architectures (UNI, ResNet-50, ViT, and VMamba), we achieved a median Spearman’s correlation coefficient of 0.546 between predicted and measured spot-level expression. As validation, VRI-derived gene signatures linked to specific tissue regions (tumor, interface, submucosa, stroma, serosa, muscularis, inflammation) showed strong concordance with signatures generated via direct ST, and VRI performed accurately in estimating cell-type proportions spatially from H&E slides. In an expanded CRC cohort controlling for tumor invasiveness and clinical factors, we further identified VRI-derived gene signatures significantly associated with key prognostic outcomes, including metastasis status. Although certain tumor-related pathways are not fully captured by histology alone, our findings highlight the ability of VRI to infer a wide range of “histology-associated” biological pathways at near-cellular resolution without requiring ST profiling. Future efforts will extend this framework to expand TME phenotyping from standard H&E tissue images, with the potential to accelerate translational CRC research at scale.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

JL is funded under NIH subawards P20GM130454, R24GM141194, P30CA023108 (DCC Developmental Funds, Prouty Pilot Grant) and P20GM104416.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

Human Research Protection Program IRB of Dartmouth Health gave ethical approval for this work.

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Data Availability

Access to manuscript data is limited due to patient privacy concerns. All data produced in the present study are available upon reasonable request. Requests should be directed to senior author Dr. Joshua Levy (joshua.levycshs.org).

Comments (0)

No login
gif