Nevozhay D, Adams RM, Van Itallie E, Bennett MR, Balázsi G. Mapping the environmental fitness landscape of a synthetic gene circuit. PLoS Comput Biol. 2012;8(4):e1002480. https://doi.org/10.1371/journal.pcbi.1002480.
Ceroni F, Algar R, Stan GB, Ellis T. Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat Methods. 2015;12:415–8. https://doi.org/10.1038/nmeth.3339.
Nikolados EM, Weiße AY, Ceroni F, Oyarzún DA. Growth defects and loss-of-function in synthetic gene circuits. ACS Synth Biol. 2019;8(6):1231–40. https://doi.org/10.1021/acssynbio.8b00531.
Santos-Navarro FN, Vignoni A, Boada Y, Picó J. RBS and promoter strengths determine the cell-growth-dependent protein mass fractions and their optimal synthesis rates. ACS Synth Biol. 2021;10(12):3290–303. https://doi.org/10.1021/acssynbio.1c00131.
Sleight SC, Bartley BA, Lieviant JA, Sauro HM. Designing and engineering evolutionary robust genetic circuits. J Biol Eng. 2010;4:12.
Rugbjerg P, Myling-Petersen N, Porse A, Sarup-Lytzen K, Sommer MOA. Diverse genetic error modes constrain large-scale bio-based production. Nat Commun. 2018;9(1):787. https://doi.org/10.1038/s41467-018-03232-w.
Radde N, Mortensen GA, Bhat D, Shah S, Clements JJ, Leonard SP, et al. Measuring the burden of hundreds of BioBricks defines an evolutionary limit on constructability in synthetic biology. Nat Commun. 2024;15(1):6242. https://doi.org/10.1038/s41467-024-50639-9.
Sandoval CM, Ayson M, Moss N, Lieu B, Jackson P, Gaucher SP, et al. Use of pantothenate as a metabolic switch increases the genetic stability of farnesene producing Saccharomyces cerevisiae. Metab Eng. 2014;25:215–26. https://doi.org/10.1016/j.ymben.2014.07.006.
Burgard A, Burk MJ, Osterhout R, Van Dien S, Yim H. Development of a commercial scale process for production of 1,4-butanediol from sugar. Curr Opin Biotechnol. 2016;42:118–25. https://doi.org/10.1016/j.copbio.2016.04.016.
Zhang S, Voigt CA. Engineered dCas9 with reduced toxicity in bacteria: implications for genetic circuit design. Nucleic Acids Res. 2018;46(20):11115–25. https://doi.org/10.1093/nar/gky884.
Rugbjerg P, Dyerberg ASB, Quainoo S, Munck C, Sommer MOA. Short and long-read ultra-deep sequencing profiles emerging heterogeneity across five platform Escherichia coli strains. Metab Eng. 2021;65:197–206. https://doi.org/10.1016/j.ymben.2020.11.006.
Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T. Interdependence of cell growth and gene expression: origins and consequences. Science. 2010;330(6007):1099–102. https://doi.org/10.1126/science.1192588.
Qian Y, Huang HH, Jiménez JI, Vecchio DD. Resource compitition shapes the response of genetic circuits. ACS Synth Biol. 2017;6:1263–72. https://doi.org/10.1021/acssynbio.6b00361.
Dourado H, Lercher MJ. An analytical theory of balanced cellular growth. Nat Commun. 2020;11(1):1226. https://doi.org/10.1038/s41467-020-14751-w.
Dai X, Zhu M, Warren M, Balakrishnan R, Patsalo V, Okano H, et al. Reduction of translating ribosomes enables Escherichia coli to maintain elongation rates during slow growth. Nat Microbiol. 2016;2(2):16231. https://doi.org/10.1038/nmicrobiol.2016.231.
Weiße AY, Oyarzún DA, Danos V, Swain PS. Mechanistic links between cellular trade-offs, gene expression, and growth. Proc Natl Acad Sci USA. 2015;112(9):E1038–47. https://doi.org/10.1073/pnas.1416533112.
Gingold H, Pilpel Y. Determinants of translation efficiency and accuracy. Mol Syst Biol. 2011;7(1):481. https://doi.org/10.1038/msb.2011.14.
Plotkin JB, Kudla G. Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet. 2011;12(1):32–42. https://doi.org/10.1038/nrg2899.
Quax TEF, Claassens NJ, Söll D, van der Oost J. Codon bias as a means to fine-tune gene expression. Mol Cell. 2015;59(2):149–61. https://doi.org/10.1016/j.molcel.2015.05.035.
Liu Y. A code within the genetic code: codon usage regulates co-translational protein folding. Cell Commun Signal. 2020;18(1):145. https://doi.org/10.1186/s12964-020-00642-6.
Schmidt M, Lee N, Zhan C, Roberts JB, Nava AA, Keiser LS, et al. Maximizing heterologous expression of engineered type I polyketide synthases: investigating codon optimization strategies. ACS Synth Biol. 2023;11:3366–80.
Love AM, Nair NU. Specific codons control cellular resources and fitness. Sci Adv. 2024;10:eadk3485. https://doi.org/10.1126/sciadv.adk3485.
Frumkin I, Lajoie MJ, Gregg CJ, Hornung G, Church GM. Codon usage of highly expressed genes affects proteome-wide translation efficiency. Proc Natl Acad Sci USA. 2018;115:E4940–9. https://doi.org/10.1073/pnas.1719375115.
Ikemura T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. J Mol Biol. 1981;146(1):1–21. https://doi.org/10.1016/0022-2836(81)90363-6.
Sharp PM, Li WH. The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987;15(3):1281–95. https://doi.org/10.1093/nar/15.3.1281.
Mignon C, Mariano N, Stadthagen G, Lugari A, Lagoutte P, Donnat S, et al. Codon harmonization - going beyond the speed limit for protein expression. FEBS Lett. 2018;592(9):1554–64. https://doi.org/10.1002/1873-3468.13046.
Bull JJ, Molineux IJ, Wilke CO. Slow fitness recovery in a codon-modified viral genome. Mol Biol Evol. 2012;29(10):2997–3004. https://doi.org/10.1093/molbev/mss119.
Yang JY, Fang W, Miranda/Sanchez F, Brown JM, Kauffman KM, Avevero MC, et al. Degradation of host translational machinery drives tRNA acquisition in viruses. Cell Syst. 2021;12:771–779. https://doi.org/10.1016/j.cels.2021.05.019.
Lipinszki Z, Vernyik V, Farago N, Sari T, Puskas LG, Blattner FR, et al. Enhancing the translational capacity of E. coli by resolving the codon bias. ACS Synth Biol. 2018;7(11):2656–2664. https://doi.org/10.1021/acssynbio.8b00332.
Chure G, Cremer J. An optimal regulation of fluxes dictates microbial growth in and out of steady state. eLife. 2023;12:e84878. https://doi.org/10.7554/elife.84878.
Bulmer M. The selection-mutation-drift theory of synonymous codon usage. Genetics. 1991;129(3):897–907. https://doi.org/10.1093/genetics/129.3.897.
Kudla G, Murray AW, Tollervey D, Plotkin JB. Coding-sequence determinants of gene expression in Escherichia coli. Science. 2009;324:255–8. https://doi.org/10.1126/science.1170160.
Jack BR, Wilke CO. Pinetree: a step-wise gene expression simulator with codon-specific translation rates. Bioinformatics. 2019;35:4176–8.
Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol. 1999;17(10):969–73. https://doi.org/10.1038/13657.
Zhou T, Weems M, Wilke CO. Translationally optimal codons associate with structurally sensitive sites in proteins. Mol Biol Evol. 2009;26(7):1571–80. https://doi.org/10.1093/molbev/msp070.
Covert MW, Knight EM, Reed JL, Herrgard MJ, Palsson BO. Integrating high-throughput and computational data elucidates bacterial networks. Nature. 2004;429(6987):92–6. https://doi.org/10.1038/nature02456.
Pédelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS. Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol. 2006;24(1):79–88.
Shen Y, Chen Y, Wu J, Shaner NC, Campbell RE. Engineering of mCherry variants with long Stokes shift, red-shifted fluorescence, and low cytotoxicity. PLoS ONE. 2017;12(2):e0171257. https://doi.org/10.1371/journal.pone.0171257.
Sander IM, Chaney JL, Clark PL. Expanding Anfinsen’s principle: contributions of synonymous codon selection to rational protein design. J Am Chem Soc. 2014;136(3):858–61. https://doi.org/10.1021/ja411302m.
Quandt EM, Traverse CC, Ochman H. Local genic base composition impacts protein production and cellular fitness. PeerJ. 2018;6:e4286. https://doi.org/10.7717/peerj.4286.
Walsh IM, Bowman MA, Soto Santarriaga IF, Anabel R, Clark PL. Synonymous codon substitutions perturb cotranslational protein folding in vivo and impair cell fitness. Proc Natl Acad Sci USA. 2020;117(7):3528–34. https://doi.org/10.1073/pnas.1907126117.
Wen JD, Lancaster L, Hodges C, Zeri AC, Yoshimura SH, Noller HF, et al. Following translation by single ribosomes one codon at a time. Nature. 2008;452(7187):598–603. https://doi.org/10.1038/nature06716.
Bao C, L
Comments (0)