Codon usage modulates the relationship between the burden and yield of protein overexpression

Nevozhay D, Adams RM, Van Itallie E, Bennett MR, Balázsi G. Mapping the environmental fitness landscape of a synthetic gene circuit. PLoS Comput Biol. 2012;8(4):e1002480. https://doi.org/10.1371/journal.pcbi.1002480.

Article  Google Scholar 

Ceroni F, Algar R, Stan GB, Ellis T. Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat Methods. 2015;12:415–8. https://doi.org/10.1038/nmeth.3339.

Article  Google Scholar 

Nikolados EM, Weiße AY, Ceroni F, Oyarzún DA. Growth defects and loss-of-function in synthetic gene circuits. ACS Synth Biol. 2019;8(6):1231–40. https://doi.org/10.1021/acssynbio.8b00531.

Article  Google Scholar 

Santos-Navarro FN, Vignoni A, Boada Y, Picó J. RBS and promoter strengths determine the cell-growth-dependent protein mass fractions and their optimal synthesis rates. ACS Synth Biol. 2021;10(12):3290–303. https://doi.org/10.1021/acssynbio.1c00131.

Article  Google Scholar 

Sleight SC, Bartley BA, Lieviant JA, Sauro HM. Designing and engineering evolutionary robust genetic circuits. J Biol Eng. 2010;4:12.

Article  Google Scholar 

Rugbjerg P, Myling-Petersen N, Porse A, Sarup-Lytzen K, Sommer MOA. Diverse genetic error modes constrain large-scale bio-based production. Nat Commun. 2018;9(1):787. https://doi.org/10.1038/s41467-018-03232-w.

Article  Google Scholar 

Radde N, Mortensen GA, Bhat D, Shah S, Clements JJ, Leonard SP, et al. Measuring the burden of hundreds of BioBricks defines an evolutionary limit on constructability in synthetic biology. Nat Commun. 2024;15(1):6242. https://doi.org/10.1038/s41467-024-50639-9.

Article  Google Scholar 

Sandoval CM, Ayson M, Moss N, Lieu B, Jackson P, Gaucher SP, et al. Use of pantothenate as a metabolic switch increases the genetic stability of farnesene producing Saccharomyces cerevisiae. Metab Eng. 2014;25:215–26. https://doi.org/10.1016/j.ymben.2014.07.006.

Article  Google Scholar 

Burgard A, Burk MJ, Osterhout R, Van Dien S, Yim H. Development of a commercial scale process for production of 1,4-butanediol from sugar. Curr Opin Biotechnol. 2016;42:118–25. https://doi.org/10.1016/j.copbio.2016.04.016.

Article  Google Scholar 

Zhang S, Voigt CA. Engineered dCas9 with reduced toxicity in bacteria: implications for genetic circuit design. Nucleic Acids Res. 2018;46(20):11115–25. https://doi.org/10.1093/nar/gky884.

Article  Google Scholar 

Rugbjerg P, Dyerberg ASB, Quainoo S, Munck C, Sommer MOA. Short and long-read ultra-deep sequencing profiles emerging heterogeneity across five platform Escherichia coli strains. Metab Eng. 2021;65:197–206. https://doi.org/10.1016/j.ymben.2020.11.006.

Article  Google Scholar 

Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T. Interdependence of cell growth and gene expression: origins and consequences. Science. 2010;330(6007):1099–102. https://doi.org/10.1126/science.1192588.

Article  Google Scholar 

Qian Y, Huang HH, Jiménez JI, Vecchio DD. Resource compitition shapes the response of genetic circuits. ACS Synth Biol. 2017;6:1263–72. https://doi.org/10.1021/acssynbio.6b00361.

Article  Google Scholar 

Dourado H, Lercher MJ. An analytical theory of balanced cellular growth. Nat Commun. 2020;11(1):1226. https://doi.org/10.1038/s41467-020-14751-w.

Article  Google Scholar 

Dai X, Zhu M, Warren M, Balakrishnan R, Patsalo V, Okano H, et al. Reduction of translating ribosomes enables Escherichia coli to maintain elongation rates during slow growth. Nat Microbiol. 2016;2(2):16231. https://doi.org/10.1038/nmicrobiol.2016.231.

Article  Google Scholar 

Weiße AY, Oyarzún DA, Danos V, Swain PS. Mechanistic links between cellular trade-offs, gene expression, and growth. Proc Natl Acad Sci USA. 2015;112(9):E1038–47. https://doi.org/10.1073/pnas.1416533112.

Article  Google Scholar 

Gingold H, Pilpel Y. Determinants of translation efficiency and accuracy. Mol Syst Biol. 2011;7(1):481. https://doi.org/10.1038/msb.2011.14.

Article  Google Scholar 

Plotkin JB, Kudla G. Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet. 2011;12(1):32–42. https://doi.org/10.1038/nrg2899.

Article  Google Scholar 

Quax TEF, Claassens NJ, Söll D, van der Oost J. Codon bias as a means to fine-tune gene expression. Mol Cell. 2015;59(2):149–61. https://doi.org/10.1016/j.molcel.2015.05.035.

Article  Google Scholar 

Liu Y. A code within the genetic code: codon usage regulates co-translational protein folding. Cell Commun Signal. 2020;18(1):145. https://doi.org/10.1186/s12964-020-00642-6.

Article  Google Scholar 

Schmidt M, Lee N, Zhan C, Roberts JB, Nava AA, Keiser LS, et al. Maximizing heterologous expression of engineered type I polyketide synthases: investigating codon optimization strategies. ACS Synth Biol. 2023;11:3366–80.

Article  Google Scholar 

Love AM, Nair NU. Specific codons control cellular resources and fitness. Sci Adv. 2024;10:eadk3485. https://doi.org/10.1126/sciadv.adk3485.

Frumkin I, Lajoie MJ, Gregg CJ, Hornung G, Church GM. Codon usage of highly expressed genes affects proteome-wide translation efficiency. Proc Natl Acad Sci USA. 2018;115:E4940–9. https://doi.org/10.1073/pnas.1719375115.

Article  Google Scholar 

Ikemura T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. J Mol Biol. 1981;146(1):1–21. https://doi.org/10.1016/0022-2836(81)90363-6.

Article  Google Scholar 

Sharp PM, Li WH. The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987;15(3):1281–95. https://doi.org/10.1093/nar/15.3.1281.

Article  Google Scholar 

Mignon C, Mariano N, Stadthagen G, Lugari A, Lagoutte P, Donnat S, et al. Codon harmonization - going beyond the speed limit for protein expression. FEBS Lett. 2018;592(9):1554–64. https://doi.org/10.1002/1873-3468.13046.

Article  Google Scholar 

Bull JJ, Molineux IJ, Wilke CO. Slow fitness recovery in a codon-modified viral genome. Mol Biol Evol. 2012;29(10):2997–3004. https://doi.org/10.1093/molbev/mss119.

Article  Google Scholar 

Yang JY, Fang W, Miranda/Sanchez F, Brown JM, Kauffman KM, Avevero MC, et al. Degradation of host translational machinery drives tRNA acquisition in viruses. Cell Syst. 2021;12:771–779. https://doi.org/10.1016/j.cels.2021.05.019.

Lipinszki Z, Vernyik V, Farago N, Sari T, Puskas LG, Blattner FR, et al. Enhancing the translational capacity of E. coli by resolving the codon bias. ACS Synth Biol. 2018;7(11):2656–2664. https://doi.org/10.1021/acssynbio.8b00332.

Chure G, Cremer J. An optimal regulation of fluxes dictates microbial growth in and out of steady state. eLife. 2023;12:e84878. https://doi.org/10.7554/elife.84878.

Bulmer M. The selection-mutation-drift theory of synonymous codon usage. Genetics. 1991;129(3):897–907. https://doi.org/10.1093/genetics/129.3.897.

Article  Google Scholar 

Kudla G, Murray AW, Tollervey D, Plotkin JB. Coding-sequence determinants of gene expression in Escherichia coli. Science. 2009;324:255–8. https://doi.org/10.1126/science.1170160.

Article  Google Scholar 

Jack BR, Wilke CO. Pinetree: a step-wise gene expression simulator with codon-specific translation rates. Bioinformatics. 2019;35:4176–8.

Article  Google Scholar 

Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol. 1999;17(10):969–73. https://doi.org/10.1038/13657.

Article  Google Scholar 

Zhou T, Weems M, Wilke CO. Translationally optimal codons associate with structurally sensitive sites in proteins. Mol Biol Evol. 2009;26(7):1571–80. https://doi.org/10.1093/molbev/msp070.

Article  Google Scholar 

Covert MW, Knight EM, Reed JL, Herrgard MJ, Palsson BO. Integrating high-throughput and computational data elucidates bacterial networks. Nature. 2004;429(6987):92–6. https://doi.org/10.1038/nature02456.

Article  Google Scholar 

Pédelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS. Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol. 2006;24(1):79–88.

Article  Google Scholar 

Shen Y, Chen Y, Wu J, Shaner NC, Campbell RE. Engineering of mCherry variants with long Stokes shift, red-shifted fluorescence, and low cytotoxicity. PLoS ONE. 2017;12(2):e0171257. https://doi.org/10.1371/journal.pone.0171257.

Article  Google Scholar 

Sander IM, Chaney JL, Clark PL. Expanding Anfinsen’s principle: contributions of synonymous codon selection to rational protein design. J Am Chem Soc. 2014;136(3):858–61. https://doi.org/10.1021/ja411302m.

Article  Google Scholar 

Quandt EM, Traverse CC, Ochman H. Local genic base composition impacts protein production and cellular fitness. PeerJ. 2018;6:e4286. https://doi.org/10.7717/peerj.4286.

Article  Google Scholar 

Walsh IM, Bowman MA, Soto Santarriaga IF, Anabel R, Clark PL. Synonymous codon substitutions perturb cotranslational protein folding in vivo and impair cell fitness. Proc Natl Acad Sci USA. 2020;117(7):3528–34. https://doi.org/10.1073/pnas.1907126117.

Article  Google Scholar 

Wen JD, Lancaster L, Hodges C, Zeri AC, Yoshimura SH, Noller HF, et al. Following translation by single ribosomes one codon at a time. Nature. 2008;452(7187):598–603. https://doi.org/10.1038/nature06716.

Article  Google Scholar 

Bao C, L

Comments (0)

No login
gif