1. Khlifi R, Hamza-Chaffai A. Head and neck cancer due to heavy metal exposure via tobacco smoking and professional exposure: A review. Toxicol Appl Pharmacol. 2010;248:71–88.
2. Järup L. Hazards of heavy metal contamination. Br Med Bull. 2003;68(1):167–82.
3. Nagajyoti PC, Lee KD, Sreekanth TVM. Heavy metals, occurrence and toxicity for plants: A review. Environ Chem Lett. 2010;8(3):199–216.
4. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014;7:60–72.
5. Oosthuizen J. Heavy metals and human health. Environmental health emerging issues and practice. 2012;25:126–224.
6. Nriagu JO. A history of global metal pollution. Science. 1996;272:223–4.
7. Mustafa YF. Coumarins from toxic phenol: An algorithm of their synthesis and assessment as biosafe, wide-spectrum, potent antimicrobial prospects. Applied Chemical Engineering. 2024;7:56–9. https://doi.org/10.1016/j.apcbee.2012.03.025.
8. Chen C-W, Chen C-F, Dong C-D. Distribution and Accumulation of Mercury in Sediments of Kaohsiung River Mouth Taiwan. APCBEE Procedia. 2012;1:153–8.
9. Valko M, Morris H, Cronin M. Metals, Toxicity and Oxidative Stress. Curr Med Chem. 2005;12(10):1161–208.
10. Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology. 2011;283(23):65–87. https://doi.org/10.1016/j.tox.2011.03.00.
11. Singh P, Mitra P, Goyal T, Sharma S, Purohit P, Sharma P. Levels of lead, aluminum, and zinc in occupationally exposed workers of North-Western India. J Basic Clin Physiol Pharmacol. 2021;33(2):191–7.
12. Gupta S, Mitra P, Sharma P. Unmasking Lead Exposure and Neurotoxicity: Epigenetics, Extracellular Vesicles, and the Gut-Brain Connection. Indian J Clin Biochem. 2025;40(1):1–3.
13. Chowdhury R, Ramond A, O’Keeffe LM, Shahzad S, Kunutsor SK, Muka T, et al. Environmental toxic metal contaminants and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2018;362:564–654.
14. Sabolić I, Breljak D, Škarica M, Herak-Kramberger CM. Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs. BioMetals. 2010;23:897–926.
15. Khan FH, Ambreen K, Fatima G, Kumar S. Assessment of health risks with reference to oxidative stress and DNA damage in chromium exposed population. Sci Total Environ. 2012;430:68–74.
16. Sharma P, Dubey RS. Lead toxicity in plants. Braz J Plant Physiol. 2005;17(1):35–52.
17. Malavika L, Goyal T, Mitra P, Saikiran G, Sharma S, Sharma P. Risk Factors for Lead Toxicity and its Effect on Neurobehavior in Indian Children. Indian J Clin Biochem. 2022;37(3):294–302.
18. Wu Y, Liang Q, Tang Q. Effect of Pb on growth, accumulation and quality component of tea plant. Procedia Eng. 2011;18:214–9.
19. Goyer RA. Lead toxicity: From overt to subclinical to subtle health effects. Environ Health Perspect. 1990;86:177–81.
20. Yang L, Zhang Y, Wang F, Luo Z, Guo S, Strähle U, et al. Toxicity of mercury: Molecular evidence. Chemosphere. 2020;245:258.
21. Trasande L, Landrigan PJ, Schechter C. Public Health and Economic Consequences of Methyl Mercury Toxicity to the Developing Brain. Environ Health Perspect. 2005;113:590.
22. Mitra P, Gupta S, Sharma P. Double Trouble: Unravelling the Health Hazards of Microplastics and Heavy Metals. Indian J Clin Biochem. 2024;39(4):447–9.
23. Goyal T, Mitra P, Singh P, Sharma S, Purohit P, Sharma P. Effect of occupational co-exposure to lead and cadmium on selected immunomodulatory cytokines. Toxicol Ind Health. 2021;38(1):1–10.
24. Kaur S, Kamli MR, Ali A. Role of arsenic and its resistance in nature. Can J Microbiol. 2011;57(10):769–74. https://doi.org/10.1139/W11-062.
25. Byeon E, Kang HM, Yoon C, Lee JS. Toxicity mechanisms of arsenic compounds in aquatic organisms. Aquat Toxicol. 2021;237:1–10.
26. Satarug S, Garrett SH, Sens MA, Sens DA. Cadmium, environmental exposure, and health outcomes. Environ Health Perspect. 2010;118(2):182–90. https://doi.org/10.1289/EHP.0901234.
27. Fatima G, Raza AM, Hadi N, Nigam N, Mahdi AA. Cadmium in Human Diseases: It’s More than Just a Mere Metal. Indian Journal of Clinical Biochemistry.. Ind J Clin Biochem. 2019;34(4):371–8. https://doi.org/10.1007/S12291-019-00839-8.
28. Sahabuddin ES, Noreen A, Daabo HMA, Kandeel M, Saleh MM, Al-qaim ZH, et al. Microplastic and oil pollutant agglomerates synergistically intensify toxicity in the marine fish, Asian seabass. Lates calcalifer Environ Toxicol Pharmacol. 2023;98:45–56. https://doi.org/10.1016/j.etap.2022.104059.
29. Ganguly K, Levänen B, Palmberg L, Åkesson A, Lindén A. Cadmium in tobacco smokers: a neglected link to lung disease. Eur Respir Rev. 2018;27(147):67–85.
30. Irfan M, Hayat S, Ahmad A, Alyemeni MN. Soil cadmium enrichment: Allocation and plant physiological manifestations. Saudi J Biol Sci. 2013;20:1–10.
31. Hossini H, Shafie B, Niri AD, Nazari M, Esfahlan AJ, Ahmadpour M, et al. A comprehensive review on human health effects of chromium: insights on induced toxicity. Environ Sci Pollut Res Int. 2022Oct;29(47):70686–705.
32. Yang L, Lin Z, Wang Y, Li C, Xu W, Li Q, et al. Nickle (II) ions exacerbate bleomycin-induced pulmonary inflammation and fibrosis by activating the ROS/Akt signaling pathway. Environ Sci Pollut Res Int. 2018Feb;25(5):4406–18.
33. Colomina MT, Peris-Sampedro F. Aluminium and Alzheimer’s Disease Adv Neurobiol. 2017;18:183–97.
34. Rehman K, Fatima F, Waheed I, Akash MSH. Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem. 2018Jan;119(1):157–84. https://doi.org/10.1002/JCB.26234.
35. Sakamoto M, Nakamura M, Murata K. Mercury as a Global Pollutant and Mercury Exposure Assessment and Health Effects. Nihon Eiseigaku Zasshi. 2018Dec;73(36):258–64. https://doi.org/10.1265/JJH.73.258.
36. Kaufman JA, Mattison C, Fretts AM, Umans JG, Cole SA, Voruganti VS, et al. Arsenic, blood pressure, and hypertension in the Strong Heart Family Study. Environ Res. 2021;195:183–95. https://doi.org/10.1016/j.envres.2021.110864.
37. Hu Y, Li J, Lou B, Wu R, Wang G, Lu C, et. al. The Role of Reactive Oxygen Species in Arsenic Toxicity. Biomolecules. 2020;0: 96
38. Ratnaike RN. Acute and chronic arsenic toxicity. Postgrad Med J. 2003;79(12):391–6.
39. Ragan HA, Mast TJ. Cadmium inhalation and male reproductive toxicity. Rev Environ Contam Toxicol. 1990;114:1–22.
40. Wieland M, Levin MK, Hingorani KS, Noah Biro F, Hingorani MM. Mechanism of cadmium-mediated inhibition of Msh2-Msh6 function in DNA mismatch repair. Biochemistry. 2009;48:9492–502.
41. Ma Y, Su Q, Yue C, Zou H, Zhu J, Zhao H, et al. The Effect of Oxidative Stress-Induced Autophagy by Cadmium Exposure in Kidney, Liver, and Bone Damage, and Neurotoxicity. Int J Mol Sci. 2022;23:22–35.
42. Oken E, Bellinger DC. Fish consumption, methylmercury and child neurodevelopment. Curr Opin Pediatr. 2008;20:178–83.
43. Morello-Frosch R, Jesdale BM. Separate and Unequal. Residential Segregation and Estimated Cancer Risks Associated with Ambient Air Toxics in U.S. Metropolitan Areas. Environ Health Perspect. 2005;114: 386.
44. Shabanda IS, Koki IB, Low KH, Zain SM, Khor SM, Abu Bakar NK. Daily exposure to toxic metals through urban road dust from industrial, commercial, heavy traffic, and residential areas in Petaling Jaya, Malaysia: a health risk assessment. Environ Sci Pollut Res Int. 2019;26:37193–211.
45. Mitra P, Misra S, Sharma P. Epigenetics in Lead Toxicity: New Avenues for Future Research. Indian J Clin Biochem. 2021Apr;36(2):129–30.
46. Maji S, Ahmed S, Kaur-Sidhu M, Mor S, Ravindra K. Health Risks of Major Air Pollutants, their Drivers and Mitigation Strategies: A Review. Air, Soil and Water Research. 2023;16:96–110.
47. Sharma P, Chambial S, Shukla KK. Lead and Neurotoxicity. Ind J Clin Biochem. 2015;30:1–2.
48. Capitão C, Martins R, Santos O, Bicho M, Szigeti T, Katsonouri A, et al. Exposure to heavy metals and red blood cell parameters in children: A systematic review of observational studies. Front Pediatr. 2022;10:679.
49. Jangid AP, John PJ, Yadav D, Mishra S, Sharma P. Impact of chronic lead exposure on selected 51 biological markers. Ind J Clin Biochem. 2012Jan;27(1):83–9. https://doi.org/10.1007/s12291-011-0163-x.
50. Larese Filon F, Bello D, Cherrie JW, Sleeuwenhoek A, Spaan S, Brouwer DH, et al. Occupational dermal exposure to nanoparticles and nano-enabled products: Part I-Factors affecting skin absorption. Int J Hyg Environ Health. 2016;219:536–44. https://doi.org/10.1016/J.IJHEH.2016.05.009.
51. Anderson SE, Meade BJ. Potential Health Effects Associated with Dermal Exposure to Occupational Chemicals. Environ Health Insights. 2014;8:51–6.
52. Fu Z, Xi S. The effects of heavy metals on human metabolism. Toxicol Mech Methods. 2020;30:167–76. https://doi.org/10.1080/15376516.2019.1701594.
53. Birla H, Minocha T, Kumar G, Misra A, Singh SK. Role of Oxidative Stress and Metal Toxicity in the Progression of Alzheimer’s Disease. Curr Neuropharmacol. 2020;18:552–62.
54. Nowicka B. Heavy metal–induced stress in eukaryotic algae mechanisms of heavy metal toxicity and tolerance with particular emphasis on oxidative stress in exposed cells and the role of antioxidant response. Environ. Sci. Pollut. Res. 2022;29:16860–911.
55. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160:1–40.
56. Flora SJS. Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxid Med Cell Longev. 2009;2:191–206.
57. Farina M, Avila DS, Da Rocha JBT, Aschner M. Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochem Int. 2013;62:575–94. https://doi.org/10.1016/J.NEUINT.2012.12.006.
58. Haidar Z, Fatema K, Shoily SS, Sajib AA. Disease-associated metabolic pathways affected by heavy metals and metalloid. Toxicol Rep. 2023;10:554–70. https://doi.org/10.1016/J.TOXREP.2023.04.010.
59. Morales ME, Derbes RS, Ade CM, Ortego JC, Stark J, Deininger PL, et al. Heavy metal exposure influences double strand break DNA repair outcomes. PLoS One. 2016;11:32.
60. Huang R, Zhou PK. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther. 2021;6:75.
61. Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A. The Effects of Cadmium Toxicity. Int J Environ Res Public Health. 2020;17:37–82. https://doi.org/10.3390/IJERPH17113782.
62. Jacob S, Thangarajan S. Fisetin impedes developmental methylmercury neurotoxicity via downregulating apoptotic signalling pathway and upregulating Rho GTPase signalling pathway in hippocampus of F1 generation rats. Int J Dev Neurosci. 2018;69:88–96.
63. Flora SJS, Pachauri V. Chelation in metal intoxication. Int J Environ Res Public Health. 2010;7:2745–88. https://doi.org/10.3390/IJERPH7072745.
64. Mohammadi MJ, Iswanto AH, Mansourimoghadam S, Taifi A, Maleki H, Mustafa YF, Dehaghi BF, Afra A, Taherian M, Kiani F. Consequences and health effects of toxic air pollutants emission by industries. Journal of Air Pollution and Health. 2022Mar 29;7(1):95–108. https://doi.org/10.18502/JAPH.V7I1.8923.
65. Jonasson ME, Afshari R. Historical documentation of lead toxicity prior to the 20th century in English literature. Hum Exp Toxicol. 2018;37:775–88.
66. Bellinger DC. Lead Pediatrics. 2004;113:1016–22. https://doi.org/10.1542/peds.113.s3.1016.
67. Grandjean P, Landrigan PJ. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014;13:330–8.
68. Tiwari AKM, Mahdi AA, Mishra S, Parveen H, Fatima G. Effect of iron and folate supplementation on Pb levels in pregnant anemic women: a prospective study. Free Radic Res. 2020;54(8–9):662–9.
69. Mitra P, Sharma S, Purohit P, Sharma P. Clinical and molecular aspects of lead toxicity: An update. Crit Rev Clin Lab Sci. 2017Nov 17;54(7–8):506–28.
70. Hu G, Jia G, Tang S, Zheng P, Hu L. Association of low-level blood lead with serum uric acid in US adolescents: a cross-sectional study. Environ Health. 2019Dec;18:775–88.
71. Howard SC, McCormick J, Pui C-H, Buddington RK, Harvey RD. Preventing and Managing Toxicities of High-Dose Methotrexate. Oncologist. 2016;21:1471–82.
72. Perazella MA. Drug-induced acute kidney injury: Diverse mechanisms of tubular injury. Curr Opin Crit Care. 2019;25:550–7.
73. Wu YS, Osman AI, Hosny M, Elgarahy AM, Eltaweil AS, Rooney DW, et al. The Toxicity of Mercury and Its Chemical Compounds: Molecular Mechanisms and Environmental and Human Health Implications: A Comprehensive Review. ACS Omega. 2024;9:5100–26.
74. Zhao Y, Zhou C, Guo X, Hu G, Li G, Zhuang Y, et al. Exposed to Mercury-Induced Oxidative Stress, Changes of Intestinal Microflora, and Association between them in Mice. Biol Trace Elem Res. 2021;199:1900–7.
75. Carocci A, Rovito N, Sinicropi MS, Genchi G. Mercury toxicity and neurodegenerative effects. Rev Environ Contam Toxicol. 2014;229:1–18.
76. Ke T, Tinkov AA, Skalny A V, Bowman AB, Rocha JBT, Santamaria A, el. al. Developmental exposure to methylmercury and ADHD, a literature review of epigenetic studies. Environ Epigenet. 2021;7: 27–32.
77. Landrigan PJ, Wright RO, Birnbaum LS. Mercury toxicity in children. Science. 2013;342:1447.
78. Raposo R da S, Pinto DV, Moreira R, Dias RP, Fontes Ribeiro CA, Oriá RB, et. al. Corrigendum: Methylmercury impact on adult neurogenesis is the worst yet to come from recent Brazilian environmental disasters. Front Aging Neurosci. 2023,15: 89–98.
79. Genchi G, Sinicropi MS, Carocci A, Lauria G, Catalano A. Mercury Exposure and Heart Diseases. Int J Environ Res Public Health. 2017;14:74.
80. Tiwari B, Fatima G, Hadi N, Fedacko J, Magomedova A, Raza AM. Metal Toxicity: Significant Health Assessment. Kufa Med J. 2024;20(2):213–35.
81. Singh MK, Dwivedi S, Yadav SS, Sharma P, Khattri S. Arsenic-Induced Hepatic Toxicity and Its Attenuation by Fruit Extract of Emblica officinalis (Amla) in Mice. Indian J Clin Biochem. 2014Jan;29(1):29–37. https://doi.org/10.1007/s12291-013-0353-9.
82. Huang HW, Lee CH, Yu HS. Arsenic-induced carcinogenesis and immune dysregulation. Int J Environ Res Public Health. 2019;16:1900–7.
83. Attreed SE, Navas-Acien A, Heaney CD. Arsenic and Immune Response to Infection During Pregnancy and Early Life. Curr Environ Health Rep. 2017;4:229–43.
84. Martinez VD, Vucic EA, Becker-Santos DD, Gil L, Lam WL. Arsenic exposure and the induction of human cancers. J Toxicol. 2011;46:455–68.
85. Kononenko M, Frishman WH. Association Between Arsenic Exposure and Cardiovascular Disease. Cardiol Rev. 2021;29:217–21.
86. Paul S, Majumdar S, Giri AK. Genetic susceptibility to arsenic-induced skin lesions and health effects: a review. Genes and Environment. 2015;37:23.
87. Anjum M, Ehsan N, Tahir A, Batool M, Hamdi H, Ijaz MU, et al. Nephroprotective Potential of Rhamnazin Against Cadmium-Induced Kidney Damages via Activation of Nrf2/Keap1 Pathway. Nat Prod Commun. 2025;20:56–62.
88. Park SS, Skaar DA, Jirtle RL, Hoyo C. Epigenetics, obesity and early-life cadmium or lead exposure. Epigenomics. 2017;9:57–75.
89. Goyal T, Mitra P, Singh P, Sharma S, Sharma P. Assessment of Blood Lead and Cadmium Levels in Occupationally Exposed Workers of Jodhpur. Rajasthan Indian J Clin Biochem. 2021Jan;36(1):100–7. https://doi.org/10.1007/s12291-020-00878-6.
90. Fujiki K. Involvement of Notch1 and ALK4/5 Signaling Pathways in Renal Tubular Cell Death: Their Application to Clarification of Cadmium Toxicity. Nihon Eiseigaku Zasshi. 2020;75:115–65.
91. Bhattacharyya MH. Cadmium osteotoxicity in experimental animals: mechanisms and relationship to human exposures. Toxicol Appl Pharmacol. 2009;238(22):258–65.
92. Yazdanfar N, Vakili Saatloo N, Sadighara P. Contamination of potentially toxic metals in children’s toys marketed in Iran. Environ Sci Pollut Res Int. 2022;29:68441–6.
93. Capitão C, Martins R, Santos O, Bicho M, Szigeti T, Katsonouri A, et al. Exposure to heavy metals and red blood cell parameters in children: A systematic review of observational studies. Front Pediatr. 2022;10(34):115–65.
94. García-Villarino M, Fernández-Iglesias R, García AV, Villa-Fernández E, Fernández-Arce L, Riaño-Galán I, et al. Exposure to a mixture of arsenic species and growth indicators in 6–12-year-old children from the cycles. Environ Int. 2025;197:125–75.
95. Gundacker C, Hengstschläger M. The role of the placenta in fetal exposure to heavy metals. Wiener Medizinische Wochenschrift. 2012;162:201–6.
96. Michael T, Kohn E, Daniel S, Hazan A, Berkovitch M, Brik A, et al. Prenatal exposure to heavy metal mixtures and anthropometric birth outcomes: a cross-sectional study. Environ Health. 2022;21:315–65.
97. Lawn JE, Cousens S, Zupan J. 4 million neonatal deaths: when? Where? Why? Lancet. 2005;365:891–900.
98. Zajac L, Kobrosly RW, Ericson B, Caravanos J, Landrigan PJ, Riederer AM. Probabilistic estimates of prenatal lead exposure at 195 toxic hotspots in low- and middle-income countries. Environ Res. 2020;183:15–65.
99. Kamel F, Umbach DM, Hu H, Munsat TL, Shefner JM, Taylor JA, et al. Lead exposure as a risk factor for amyotrophic lateral sclerosis. Neurodegener Dis. 2005;2:195–201.
100. Weisskopf MG, Weuve J, Nie H, Saint-Hilaire MH, Sudarsky L, Simon DK, et al. Association of cumulative lead exposure with Parkinson’s disease. Environ Health Perspect. 2010;118:1609–13.
101. Engström A, Michaëlsson K, Vahter M, Julin B, Wolk A, Åkesson A. Associations between dietary cadmium exposure and bone mineral density and risk of osteoporosis and fractures among women. Bone. 2012;50:1372–8.
102. Mordukhovich I, Wright RO, Hu H, Amarasiriwardena C, Baccarelli A, Litonjua A, et al. Associations of toenail arsenic, cadmium, mercury, manganese, and lead with blood pressure in the normative aging study. Environ Health Perspect. 2012;120:98–104.
103. Münzel T, Gori T, Al-Kindi S, Deanfield J, Lelieveld J, Daiber A, et al. Effects of gaseous and solid constituents of air pollution on endothelial function. Eur Heart J. 2018;39:3543.
104. Navas-Acien A, Guallar E, Silbergeld EK, Rothenberg SJ. Lead exposure and cardiovascular disease - A systematic review. Environ Health Perspect. 2007;115:472–82.
105. Kim NH, Hyun YY, Lee KB, Chang Y, Rhu S, Oh KH, et al. Environmental Heavy Metal Exposure and Chronic Kidney Disease in the General Population. J Korean Med Sci. 2015;30:272.
106. Hameed RM, Haider H, Kadhim WA, Fatima G, Anwar S. Toxicity Of Aflatoxin B1 Towards The Inducing Alterations In The Liver Functions. Era J Med Res. 2022;9(2):164–73.
107. Kasperczyk S, Kasperczyk J, Ostałowska A, Zalejska-Fiolka J, Wielkoszyński T, Świȩtochowska E, et al. The role of the antioxidant enzymes in erythrocytes in the development of arterial hypertension among humans exposed to lead. Biol Trace Elem Res. 2009;130:95–106.
108. Fatima G, Das SK, Mahdi AA. Deciphering the Role of Oxidative and Antioxidative Parameters and Toxic Metal Ion Content in Women with Fibromyalgia Syndrome. Free Radic Biol Med. 2016;100:S96–7. https://doi.org/10.1016/j.freeradbiomed.2016.10.242.
109. Fatima G, Das SK, Mahdi AA. Oxidative stress and antioxidative parameters and metal ion content in patients with fibromyalgia syndrome: implications in the pathogenesis of the disease. Clin Exp Rheumatol. 2013;31(79):S128-33.
110. Caspi A, Houts RM, Belsky DW, Goldman-Mellor SJ, Harrington H, Meier MH, et al. The p Factor: One General Psychopathology Factor in the Structure of Psychiatric Disorders? Clin Psychol Sci. 2014;2:119.
111. Vaziri ND. Mechanisms of lead-induced hypertension and cardiovascular disease. Am J Physiol Heart Circ Physiol. 2008;295:85–105.
112. Hu H, Shih R, Rothenberg S, Schwartz BS. The epidemiology of lead toxicity in adults: Measuring dose and consideration of other methodologic issues. Environ Health Perspect. 2007;115:455–62.
113. Grandjean P, Landrigan P. Developmental neurotoxicity of industrial chemicals. Lancet. 2006;368:2167–78.
114. Roman HA, Walsh TL, Coull BA, Dewailly É, Guallar E, Hattis D, et al. Evaluation of the cardiovascular effects of methylmercury exposures: Current evidence supports development of a dose-response function for regulatory benefits analysis. Environ Health Perspect. 2011;119:607–14.
115. Kile ML, Baccarelli A, Hoffman E, Tarantini L, Quamruzzaman Q, Rahman M, et al. Prenatal Arsenic Exposure and DNA Methylation in Maternal and Umbilical Cord Blood Leukocytes. Environ Health Perspect. 2012;120:1061.
116. Farzan SF, Eunus HM, Haque SE, Sarwar G, Hasan AR, Wu F, et al. Arsenic exposure from drinking water and endothelial dysfunction in Bangladeshi adolescents. Environ Res. 2022;208:96–165.
117. Chen X, Zhu G, Wang Z, Liang Y, Chen B, He P, et al. The association between dietary cadmium exposure and renal dysfunction - the benchmark dose estimation of reference levels: the ChinaCad study. J Appl Toxicol. 2018;38:1365–73.
118. Jeong J, Yun SM, Kim M, Koh YH. Association of Blood Cadmium with Cardiovascular Disease in Korea: From the Korea National Health and Nutrition Examination Survey 2008–2013 and 2016. Int J Environ Res Public Health. 2020;17:6288.
129. Raza AM, Fedacko J, Dhole P, Raza AM. Heavy Metal Exposure and Its Health Implications: A Comprehensive Examination.. 2024;50:779.
120. Can H, Ozyigit II, Can M, Hocaoglu-Ozyigit A, Yalcin IE. Environment-Based Impairment in Mineral Nutrient Status and Heavy Metal Contents of Commonly Consumed Leafy Vegetables Marketed in Kyrgyzstan: A Case Study for Health Risk Assessment. Biol Trace Elem Res. 2021;199:1123–44.
121. Keshavarzi B, Hassanaghaei M, Moore F, Rastegari Mehr M, Soltanian S, Lahijanzadeh AR, et al. Heavy metal contamination and health risk assessment in three commercial fish species in the Persian Gulf. Mar Pollut Bull. 2018;129(21):245–52.
122. Clifton JC. Mercury exposure and public health. Pediatr Clin North Am. 2007;54:237–237.
123. Zartarian V, Xue J, Tornero-Velez R, Brown J. Children’s lead exposure: A multimedia modeling analysis to guide public health decision-making. Environ Health Perspect. 2017;125:89–110.
124. Li S, Wang J, Zhang B, Liu Y, Lu T, Shi Y, Dong L, et al. Urinary lead concentration is an independent predictor of cancer mortality in the US general population. Front Oncol. 2018;29(8):242.
125. Singh N, Yadav A, Das S, Debnath N. Recent advances in heavy metal/metalloid ion treatment from wastewater using nanocomposites and bionanocomposites. Front nanotechnol. 2024;6:119–56.
126. El Messaoudi N, Miyah Y, Şenol ZM, Ciğeroğlu Z, Kazan-Kaya ES, Gubernat S, et al. Comprehensive analytical review of heavy metal removal efficiency using agricultural solid waste-based bionanocomposites. Nano-Structures and Nano-Objects. 2024;38:119.
127. Derakhshan Nejad Z, Jung MC, Kim KH. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology. Environ Geochem Health. 2018;40:927–53.
128. Jeong H, Byeon E, Kim DH, Maszczyk P, Lee JS. Heavy metals and metalloid in aquatic invertebrates: A review of single/mixed forms, combination with other pollutants, and environmental factors. Mar Pollut Bull. 2023;191:679.
129. Wu W, Zhang K, Jiang S, Liu D, Zhou H, Zhong R, et al. Association of co-exposure to heavy metals with renal function in a hypertensive population. Environ Int. 2018;112:198–206.
130. Mandiwana KL, Resane T, Panichev N, Ngobeni P. The application of tree bark as bio-indicator for the assessment of Cr (VI) in air pollution. J Hazard Mater. 2006;137:1241–5.
131. Emmanuel UC, Chukwudi MI, Monday SS, Anthony AI. Human health risk assessment of heavy metals in drinking water sources in three senatorial districts of Anambra State. Nigeria Toxicol Rep. 2022;9(52):869–75.
132. Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A. The Effects of Cadmium Toxicity. Int J Environ Res Public Health. 2020;17:59–75.
133. Tomašević M, Vukmirović Z, Rajšić S, Tasić M, Stevanović B. Characterization of trace metal particles deposited on some deciduous tree leaves in an urban area. Chemosphere. 2005;61:753–60.
134. McClenny WA, Colón M. Measurement of volatile organic compounds by the US Environmental Protection Agency Compendium Method TO-17: Evaluation of performance criteria. J Chromatogr A. 1998;813:101–11.
135. Godebo TR, Paul CJ, Jeuland MA, Tekle-Haimanot R. Biomonitoring of metals and trace elements in urine of central Ethiopian populations. Int J Hyg Environ Health. 2019;222:410.
136. Navas-Acien A, Sharrett AR, Silbergeld EK, Schwartz BS, Nachman KE, Burke TA, et al. Arsenic exposure and cardiovascular disease: a systematic review of the epidemiologic evidence. Am J Epidemiol. 2005;162:1037–49.
137. Ogwu MC, Izah SC, Sawyer WE, Amabie T. Environmental Risk Assessment of Trace Metal Pollution: A Statistical Perspective. Environ Geochem Health. 2025;47:55–65.
138. Alter W, Ogan JR, Ietrich IND, Ames J, Are HW, Ockery OWD, et al. The Effect of Chelation Therapy with Succimer on Neuropsychological Development in Children Exposed to Lead. N.Eng. J. Med. 2001;344:1421–6.
139. Geier DA, Geier MR. A prospective study of mercury toxicity biomarkers in autistic spectrum disorders. JToxicol. Environ Health - Part A: Current Issues. 2007;70:1723–30.
140. Yoshida T, Yamauchi H, Fan Sun G. Chronic health effects in people exposed to arsenic via the drinking water: Dose-response relationships in review. Toxicol Appl Pharmacol. 2004;198:243–52.
141. Sears ME. Chelation: Harnessing and enhancing heavy metal detoxification - A review. Sci. World J. 2013;17:59–75.
142. Mohai P, Saha R. Reassessing racial and socioeconomic disparities in environmental justice research. Demography. 2006;43:383–99.
143. Halmo L, Nappe TM. Lead Toxicity StatPearls. 2023;55:12–5.
144. Rempel DM, Amirtharajah M, Descatha A; Shoulder, Elbow & Hand Injuries. CURRENT Diagnosis & Treatment: Occupational & Environmental Medicine. 2013;191: 1156–1205.
145. Luo J, Zhang Y, Zhu S, Tong Y, Ji L, Zhang W, et al. The application prospect of metal/metal oxide nanoparticles in the treatment of osteoarthritis. Naunyn Schmiedebergs Arch Pharmacol. 2021;394:1991.
146. Mustafa, Y. F. Coumarins from toxic phenol 2024: An algorithm of their synthesis and assessment as biosafe, wide-spectrum, potent antimicrobial prospects. Appl. Chem. Eng. 7(3):55 − 27. https://doi.org/10.59429/ace.v7i3.5527
147. Navas-Acien A, Silbergeld EK, Pastor-Barriuso R, Guallar E. Arsenic exposure and prevalence of type 2 diabetes in US adults. JAMA. 2008;300(19):814–22.
148. Narod SA, Huzarski T, Jakubowska A, Gronwald J, Cybulski C, Oszurek O, et al. Serum selenium level and cancer risk: A nested case-control study. Hered Cancer Clin Pract. 2019;17:2522–614. https://doi.org/10.1186/S13053-019-0131-7.
149. Tutone M, Almerico AM. Computational Approaches and Drug Discovery: Where Are We Going? Molecules. 2024;29:969. https://doi.org/10.3390/MOLECULES29050969.
Comments (0)