Nonsteroidal anti-inflammatory drugs, blood metabolites, and kidney stones: a comprehensive Mendelian randomization study

Singh P, Harris PC, Sas DJ, Lieske JC (2022) The genetics of kidney stone disease and nephrocalcinosis. Nat Rev Nephrol 18:224–240. https://doi.org/10.1038/s41581-021-00513-4

Article  PubMed  Google Scholar 

Pearle MS, Goldfarb DS, Assimos DG et al (2014) Medical management of kidney stones: AUA guideline. J Urol 192:316–324. https://doi.org/10.1016/j.juro.2014.05.006

Article  PubMed  Google Scholar 

Bindu S, Mazumder S, Bandyopadhyay U (2020) Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem Pharmacol 180:114147. https://doi.org/10.1016/j.bcp.2020.114147

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harirforoosh S, Asghar W, Jamali F (2013) Adverse effects of nonsteroidal antiinflammatory drugs: an update of gastrointestinal, cardiovascular and renal complications. J Pharm Pharm Sci Publ Can Soc Pharm Sci Soc Can Sci Pharm 16:821–847. https://doi.org/10.18433/j3vw2f

Article  Google Scholar 

Sun FF, Taylor BM, McGuire JC, Wong PY (1981) Metabolism of prostaglandins in the kidney. Kidney Int 19:760–770. https://doi.org/10.1038/ki.1981.78

Article  CAS  PubMed  Google Scholar 

Smith GD, Ebrahim S (2003) Mendelian randomization: can genetic epidemiology contribute to Understanding environmental determinants of disease? Int J Epidemiol 32:1–22. https://doi.org/10.1093/ije/dyg070

Article  PubMed  Google Scholar 

Swanson SA, Tiemeier H, Ikram MA, Hernán MA (2017) Nature as a trialist?? Deconstructing the analogy between Mendelian randomization and randomized trials. Epidemiol Camb Mass 28:653–659. https://doi.org/10.1097/EDE.0000000000000699

Article  Google Scholar 

Lawlor DA, Harbord RM, Sterne JAC et al (2008) Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 27:1133–1163. https://doi.org/10.1002/sim.3034

Article  PubMed  Google Scholar 

Kurki MI, Karjalainen J, Palta P et al (2023) FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613:508–518. https://doi.org/10.1038/s41586-022-05473-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen B, Pu B, Li S et al (2023) The role of NSAID in mediating the effect of genetically predicted major depressive disorder on osteomyelitis: A Mendelian randomization study. J Affect Disord 341:62–66. https://doi.org/10.1016/j.jad.2023.08.121

Article  CAS  PubMed  Google Scholar 

Lv Z, Deng C (2024) NSAID medication mediates the causal effect of genetically predicted major depressive disorder on falls: evidence from a Mendelian randomization study. J Affect Disord 361:217–223. https://doi.org/10.1016/j.jad.2024.06.028

Article  CAS  PubMed  Google Scholar 

Chen Y, Lu T, Pettersson-Kymmer U et al (2023) Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases. Nat Genet 55:44–53. https://doi.org/10.1038/s41588-022-01270-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen L, Yang H, Li H et al (2022) Insights into modifiable risk factors of cholelithiasis: A Mendelian randomization study. Hepatol Baltim Md 75:785–796. https://doi.org/10.1002/hep.32183

Article  CAS  Google Scholar 

Burgess S, Small DS, Thompson SG (2017) A review of instrumental variable estimators for Mendelian randomization. Stat Methods Med Res 26:2333–2355. https://doi.org/10.1177/0962280215597579

Article  PubMed  Google Scholar 

Carter AR, Sanderson E, Hammerton G et al (2021) Mendelian randomisation for mediation analysis: current methods and challenges for implementation. Eur J Epidemiol 36:465–478. https://doi.org/10.1007/s10654-021-00757-1

Article  PubMed  PubMed Central  Google Scholar 

MacKinnon DP, Lockwood CM, Hoffman JM et al (2002) A comparison of methods to test mediation and other intervening variable effects. Psychol Methods 7:83–104. https://doi.org/10.1037/1082-989x.7.1.83

Article  PubMed  PubMed Central  Google Scholar 

Mulkiewicz E, Wolecki D, Świacka K et al (2021) Metabolism of non-steroidal anti-inflammatory drugs by non-target wild-living organisms. Sci Total Environ 791:148251. https://doi.org/10.1016/j.scitotenv.2021.148251

Article  CAS  PubMed  Google Scholar 

Khan SR, Pearle MS, Robertson WG et al (2016) Kidney stones. Nat Rev Dis Primer 2:16008. https://doi.org/10.1038/nrdp.2016.8

Article  Google Scholar 

Bernard L, Chen J, Kim H et al (2023) Metabolomics of dietary intake of total, animal, and plant protein: results from the atherosclerosis risk in communities (ARIC) study. Curr Dev Nutr 7:100067. https://doi.org/10.1016/j.cdnut.2023.100067

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khan SR, Canales BK, Dominguez-Gutierrez PR (2021) Randall’s plaque and calcium oxalate stone formation: role for immunity and inflammation. Nat Rev Nephrol 17:417–433. https://doi.org/10.1038/s41581-020-00392-1

Article  CAS  PubMed  Google Scholar 

Khan SR, Glenton PA (1996) Increased urinary excretion of lipids by patients with kidney stones. Br J Urol 77:506–511. https://doi.org/10.1046/j.1464-410x.1996.09324.x

Article  CAS  PubMed  Google Scholar 

Sur RL, Masterson JH, Palazzi KL et al (2013) Impact of Statins on nephrolithiasis in hyperlipidemic patients: a 10-year review of an equal access health care system. Clin Nephrol 79:351–355. https://doi.org/10.5414/CN107775

Article  CAS  PubMed  Google Scholar 

Schwille PO, Manoharan M, Schmiedl A (2005) Is idiopathic recurrent calcium urolithiasis in males a cellular disease? Laboratory findings in plasma, urine and erythrocytes, emphasizing the absence and presence of stones, oxidative and mineral metabolism: an observational study. Clin Chem Lab Med 43:590–600. https://doi.org/10.1515/CCLM.2005.103

Article  CAS  PubMed  Google Scholar 

Taguchi K, Hamamoto S, Okada A et al (2017) Genome-Wide gene expression profiling of Randall’s plaques in calcium oxalate stone formers. J Am Soc Nephrol JASN 28:333–347. https://doi.org/10.1681/ASN.2015111271

Article  CAS  PubMed  Google Scholar 

Rahman S, Malcoun A (2014) Nonsteroidal antiinflammatory drugs, cyclooxygenase-2, and the kidneys. Prim Care 41:803–821. https://doi.org/10.1016/j.pop.2014.09.001

Article  PubMed  Google Scholar 

Taguchi K, Okada A, Hamamoto S et al (2015) Proinflammatory and metabolic changes facilitate renal crystal deposition in an obese mouse model of metabolic syndrome. J Urol 194:1787–1796. https://doi.org/10.1016/j.juro.2015.07.083

Article  CAS  PubMed  Google Scholar 

Bozza PT, Viola JPB (2010) Lipid droplets in inflammation and cancer. Prostaglandins Leukot Essent Fat Acids 82:243–250. https://doi.org/10.1016/j.plefa.2010.02.005

Article  CAS  Google Scholar 

Bozza PT, Payne JL, Morham SG et al (1996) Leukocyte lipid body formation and eicosanoid generation: cyclooxygenase-independent Inhibition by aspirin. Proc Natl Acad Sci U S A 93:11091–11096. https://doi.org/10.1073/pnas.93.20.11091

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vieira-de-Abreu A, Assis EF, Gomes GS et al (2005) Allergic challenge-elicited lipid bodies compartmentalize in vivo leukotriene C4 synthesis within eosinophils. Am J Respir Cell Mol Biol 33:254–261. https://doi.org/10.1165/rcmb.2005-0145OC

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee W, Kim HY, Choi Y-J et al (2022) SNX10-mediated degradation of LAMP2A by NSAIDs inhibits chaperone-mediated autophagy and ind

Comments (0)

No login
gif