New Analytical Approaches to Determination of Linear Alkylbenzene Sulfonates in Natural Water at Level Using HPLC-UV, NMR Spectroscopy, and GC-MS

Ya. R. Bazel, I. P. Antal, V. M. Lavra, and Zh. A. Kormosh, J. Anal. Chem. 69, 228 (2014). https://doi.org/10.1134/S1061934814010043

Article  Google Scholar 

L. N. Britton, J. Surfact. Deterg. 1, 109 (1998). https://doi.org/10.1007/s11743-998-0014-6

Article  Google Scholar 

SIDS Initial Assessment Report for 20th SIAM, Paris, France, April 19–21, 2005 (UNEP Publ., 2005), p. 1. https://www.cleaninginstitute.org/sites/default/files/research-pdfs/LAS_SIAR.pdf. Accessed December 20, 2024.

Revised Environmental Aspect of the HERA Report CAS No. 68411-30-3 (2013), p. 1. https://www.heraproject.com/files/HERA-LAS%20revised%20February%202013.pdf. Accessed December 20, 2024.

S. E. Belanger, J. W. Bowling, D. M. Lee, E. M. le Blank, K. M. Kerr, D. C. McAvoy, S. C. Christman, and D. H. Davidson, Ecotoxicol. Environ. Safety 52, 150 (2002). https://doi.org/10.1006/eesa.2002.2179

Article  Google Scholar 

J. Sima, M. Pazdernik, J. Triska, and L. Svoboda, J. Environ. Sci. Health, Part A 48, 559 (2013). https://doi.org/10.1080/10934529.2013.730453

Article  Google Scholar 

A. M. Lewis, Water Res. 25, 101 (1991). https://doi.org/10.1016/0043-1354(91)90105-Y

Article  Google Scholar 

V. I. Ivanova, R. D. Stanimirova, K. D. Danova, P. A. Kralchevsky, and J. T. Petkov, Colloids Surf., A 519, 87 (2017). https://doi.org/10.1016/j.colsurfa.2016.06.039

Article  Google Scholar 

A. A. Nikonova, I. B. Mizandrontsev, B. N. Bazhenov, I. V. Khanaev, O. V. Shabalina, A. A. Afanasyeva, T. N. Avezova, A. N. Chindyavskaya, A. N. Bityutsky, A. Y. Kan, L. G. Karikh, K. S. Dubrova, S. S. Vorobyeva, and O. Y. Glyzina, Diversity 15, 77 (2023). https://doi.org/10.3390/d15010077

Article  Google Scholar 

A. M. R. Gouda, A. E. Hagras, M. A. Okbah, and M. I. El-Gammal, Saudi J. Biol. Sci. 29, 1006 (2022). https://doi.org/10.1016/j.sjbs.2021.09.074

Article  Google Scholar 

S. D. Dyer, M. J. Bernhard, C. Cowan-Ellsberry, E. Perdu-Durand, S. Demmerle, and J.-P. Cravedi, Chemosphere 72, 850 (2008). https://doi.org/10.1016/j.chemosphere.2009.04.011

Article  ADS  Google Scholar 

E. Jorgensen and K. Christoffersen, Environ. Toxicol. Chem. 19, 904 (2000). https://doi.org/10.1002/etc.5620190417

Article  Google Scholar 

K. Stamatelatou, C. Pakou, and G. Lyberatos, in Comprehensive Biotechnology, Ed. by M. Moo-Young, 2nd ed. (Pergamon, Oxford, 2011) p. 473. https://doi.org/10.1016/B978-0-08-088504-9.00496-7

Book  Google Scholar 

G. P. Flores, G. M. Badillo, M. H. Cortazar, C. N. Hi-polito, R. S. Perez, and I. G. Sanchez, Rev. Int. Contam. Ambient. 26, 39 (2010). ISSN: 0188-4999.

Google Scholar 

N. Liu and Z. Wu, Environ. Sci. Pollut. Res. Int. 25, 4934 (2018). https://doi.org/10.1007/s11356-017-0883-4

Article  Google Scholar 

R. B. Baird, A. D. Eaton, and E. W. Rice, in Standard Methods for the Examination of Water and Wastewater, 23rd ed. (Am. Public Health Assoc., Washington, 2017). https://doi.org/10.2105/SMWW.2882.109

Book  MATH  Google Scholar 

EPA-NERL: 425.1: Surfactants by Colorimetry. Methylene Blue Active Substances (MBAS) (Colorimetric). Methods for the Chemical Analysis of Water and Wastes (MCAWW) EPA/600/4-79/020 (US EPA NERL, OH, 1971). http://www.epa.gov/nerl/. Accessed April 10, 2024.

EPA-NERL: 425.1: Surfactants by Colorimetry. National Environmental Methods Index (NEMI). https://www.nemi.gov/methods/method_summary/ 5266/. Accessed April 10, 2024.

P. Eivazi, UNLV Retrosp. Theses Dissertations No. 3153 (1981). https://doi.org/10.25669/2g16-q1tk

J. M. Traverso-Soto, E. González-Mazo, and P. A. Lara-Martín, in Chromatography - The Most Versatile Method of Chemical Analysis, Ed. by C. de Azevedo (IntechOpen, London, 2007), p. 187. https://doi.org/10.5772/48475

Book  MATH  Google Scholar 

W. H. Ding and C. T. Chen, J. Chromatogr., A 857, 359 (1999). https://doi.org/10.1016/s0021-9673(99)00722-0

Z. Moldovan, V. Avram, O. Marincas, P. Petrov, and T. Ternes, J. Chromatogr., A 1218, 343 (2011). https://doi.org/10.1016/j.chroma.2010.11.043

M. Akyüz, Talanta 71, 471 (2007). https://doi.org/10.1016/j.talanta.2006.06.014

Article  Google Scholar 

W. H. Ding, J.-H. Lo, and S.-H. Tzing, J. Chromatogr., A 818, 270 (1998). https://doi.org/10.1016/S0021-9673(98)00550-0

A. A. Nikonova, A. G. Proidakov, A. V. Rokhin, A. N. Chindyavskaya, S. D. Dylgerova, E. F. Rokhina, and I. V. Khanaev, Talanta Open 8, 100238 (2023). https://doi.org/10.1016/j.talo.2023.100238

A. Marcomini and W. Giger, Anal. Chem. 59, 1709 (1987). https://doi.org/10.1021/ac00140a027

Article  Google Scholar 

H. De Henau and E. Mathijs, Int. J. Environ. Anal. Chem. 26, 279 (1986). https://doi.org/10.1080/03067318608077120

Article  Google Scholar 

P. A. Lara-Martin, E. Gonzalez-Mazo, and B. J. Brownawell, J. Chromatography A 1218, 4799 (2011). https://doi.org/10.1016/j.chroma.2011.02.031

Yu. Xue, Yo. Hieda, J. Fujihara, K. Takayama, and H. Takeshita, J. Anal. Toxicol. 31, 37 (2007). https://doi.org/10.1093/jat/31.1.37

Article  Google Scholar 

P. Eichhorn, O. Lopez, and D. Barcelo, J. Chromatography A 10670, 171 (2005). https://doi.org/10.1016/j.chroma.2005.01.014

B. Oliver-Rodriguez, A Zafra-Gomez., F. J. Camino-Sanchez, J. E. Conde-Gonzalez, J. P. Perez-Trujillo, and J. L. Vilchez, Microchem. J. 110, 158 (2013). https://doi.org/10.1016/j.microc.2013.03.006

Article  Google Scholar 

J. Riu, E. Martinez, D. Barcelo, and A. Ginebreda, Fresenius J. Anal. Chem. 371, 448 (2001). https://doi.org/10.1007/s002160101052

Article  Google Scholar 

L. Ceraulo, G. Giorgi, V. T. Liverdi, D. Bongiorno, S. Indelicato, F. di Gaudi, and S. Indelicato, Eur. J. Mass Spectrom. 17, 525 (2011). https://doi.org/10.1255/ejms.1158

Article  Google Scholar 

A. Cuzzola, A. Raffaelli, and P. Salvadori, Appl. Catal., B 59, 113 (2005). https://doi.org/10.1016/j.apcatb.2005.01.008

Article  Google Scholar 

L. Sarrazin, C. Diana, E. Wafo, T. Schembri, V. Pichard-Lagadec, and P. Rebouillon, Int. J. Environ. Stud. 62, 301 (2005). https://doi.org/10.1080/00207230500041037

Article  Google Scholar 

C. Bengoechea and A. S. Cantarero, J. Surf. Deterg. 12, 21 (2009). https://doi.org/10.1007/s11743-008-1100-8

Article  Google Scholar 

S. V. Alekseev, L. P. Alekseeva, P. A. Sholokhov, A. I. Orgil’yanov, and A. M. Kononov, Geogr. Prir. Resursy, No. 4, 105 (2018). https://doi.org/10.21782/GIPR0206-1619-2018-4(105-114)

PNDF (Fed. Environ. Regul. Document) 14.1:2.258-10: Quantitative chemical analysis of water. Methodology for measuring the mass concentration of anionic surfactants in natural and waste water using the photometric method with methylene blue (microextraction). Moscow, Federel Sevice on Ecological, Technological, and Atomic Inspection (2010) (in Russian).

I. Chatterjee, G. A. Somerville, and C. Heilmann, A-ppl. Environ. Microbiol. 72, 2627 (2006). https://doi.org/10.1128/AEM.72.4.2627-2636.2006

Article  ADS  Google Scholar 

A. A. Nikonova, E. F. Rokhina, O. Yu. Glyzina, S. D. Dylgerova, A. N. Chindyavskaya, A. V. Rokhin, A. G. Proidakov, J. Anal. Chem. 79, 1616 (2024). https://doi.org/10.1134/S1061934824701041

Comments (0)

No login
gif