A magnetic resonance image-based deep learning radiomics nomogram for hepatocyte cytokeratin 7 expression: application to predict cholestasis progression in children with pancreaticobiliary maljunction

Kamisawa T, Ando H, Suyama M et al (2012) Japanese clinical practice guidelines for pancreaticobiliary maljunction. J Gastroenterol 47:731–759. https://doi.org/10.1007/s00535-012-0611-2

Article  PubMed  Google Scholar 

Ono A, Arizono S, Isoda H et al (2020) Imaging of pancreaticobiliary maljunction. Radiographics 40:378–392. https://doi.org/10.1148/rg.2020190108

Article  PubMed  Google Scholar 

Ono S, Fumino S, Iwai N (2011) Diagnosis and treatment of pancreaticobiliary maljunction in children. Surg Today 41:601–605. https://doi.org/10.1007/s00595-010-4492-9

Article  PubMed  Google Scholar 

Shearn CT, Fennimore B, Orlicky DJ et al (2019) Cholestatic liver disease results increased production of reactive aldehydes and an atypical periportal hepatic antioxidant response. Free Radic Biol Med 143:101–114. https://doi.org/10.1016/j.freeradbiomed.2019.07.036

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim YJ, Kim SH, Yoo SY et al (2022) Comparison of clinical and radiologic findings between perforated and non-perforated choledochal cysts in children. Korean J Radiol 23:271–279. https://doi.org/10.3348/kjr.2021.0169

Article  PubMed  PubMed Central  Google Scholar 

Zhu L, Xiong J, Lv Z et al (2020) Type C pancreaticobiliary maljunction is associated with perforated choledochal cyst in children. Front Pediatr 8:168. https://doi.org/10.3389/fped.2020.00168

Article  PubMed  PubMed Central  Google Scholar 

Kamisawa T, Kaneko K, Itoi T et al (2017) Pancreaticobiliary maljunction and congenital biliary dilatation. The Lancet Gastroenterology&Hepatology 2:610–618. https://doi.org/10.1016/S2468-1253(17)30002-X

European Association for the Study of the Liver (2009) EASL Clinical Practice Guidelines: management of cholestatic liver diseases. J Hepatol 51:237–267. https://doi.org/10.1016/j.jhep.2009.04.009

Article  Google Scholar 

Van Eyken P, Sciot R, Desmet VJ (1989) A cytokeratin immunohistochemical study of cholestatic liver disease: evidence that hepatocytes can express “bile duct-type” cytokeratins. Histopathology 15:125–135. https://doi.org/10.1111/j.1365-2559.1989.tb03060.x

Article  PubMed  Google Scholar 

Yabushita K, Yamamoto K, Ibuki N et al (2001) Aberrant expression of cytokeratin 7 as a histological marker of progression in primary biliary cirrhosis. Liver 21:50–55. https://doi.org/10.1034/j.1600-0676.2001.210108.x

Article  CAS  PubMed  Google Scholar 

Sjöblom N, Boyd S, Manninen A et al (2021) Chronic cholestasis detection by a novel tool: automated analysis of cytokeratin 7-stained liver specimens. Diagn Pathol 16:41. https://doi.org/10.1186/s13000-021-01102-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Santos JL, Kieling CO, Meurer L et al (2009) The extent of biliary proliferation in liver biopsies from patients with biliary atresia at portoenterostomy is associated with the postoperative prognosis. J Pediatr Surg 44:695–701. https://doi.org/10.1016/j.jpedsurg.2008.09.013

Article  PubMed  Google Scholar 

Bateman AC, Hübscher SG (2010) Cytokeratin expression as an aid to diagnosis in medical liver biopsies. Histopathology 56:415–425. https://doi.org/10.1111/j.1365-2559.2009.03391.x

Article  PubMed  Google Scholar 

Ovchinsky N, Moreira RK, Lefkowitch JH et al (2012) Liver biopsy in modern clinical practice: a pediatric point-of-view. Adv Anat Pathol 19:250–262. https://doi.org/10.1097/PAP.0b013e31825c6a20

Article  PubMed  PubMed Central  Google Scholar 

Cuypers E, Claes BSR, Biemans R et al (2022) ‘On the spot’ digital pathology of breast cancer based on single-cell mass spectrometry imaging. Anal Chem 94:6180–6190. https://doi.org/10.1021/acs.analchem.1c05238

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taqi S, Sami S, Sami L et al (2018) A review of artifacts in histopathology. Journal of Oral and Maxillofacial Pathology 22:279. https://doi.org/10.4103/jomfp.JOMFP_125_15

Article  PubMed  PubMed Central  Google Scholar 

Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762. https://doi.org/10.1038/nrclinonc.2017.141

Article  PubMed  Google Scholar 

Wang W, Gu D, Wei J et al (2020) A radiomics-based biomarker for cytokeratin 19 status of hepatocellular carcinoma with gadoxetic acid–enhanced MRI. Eur Radiol 30:3004–3014. https://doi.org/10.1007/s00330-019-06585-y

Article  PubMed  Google Scholar 

Zhang L, Qi Q, Li Q et al (2022) Ultrasomics prediction for cytokeratin 19 expression in hepatocellular carcinoma: a multicenter study. Front Oncol 12:994456. https://doi.org/10.3389/fonc.2022.994456

Article  CAS  PubMed  PubMed Central  Google Scholar 

McBee MP, Awan OA, Colucci AT et al (2018) Deep learning in radiology. Acad Radiol 25:1472–1480. https://doi.org/10.1016/j.acra.2018.02.018

Article  PubMed  Google Scholar 

Chen Y, Chen J, Zhang Y et al (2021) Preoperative prediction of cytokeratin 19 expression for hepatocellular carcinoma with deep learning radiomics based on gadoxetic acid-enhanced magnetic resonance imaging. J Hepatocell Carcinoma 8:795–808. https://doi.org/10.2147/JHC.S313879

Article  PubMed  PubMed Central  Google Scholar 

Yang Y, Zhang X, Zhao L et al (2023) Development of an MRI-based radiomics-clinical model to diagnose liver fibrosis secondary to pancreaticobiliary maljunction in children. J Magn Reson Imaging 58:605–617. https://doi.org/10.1002/jmri.28586

Article  PubMed  Google Scholar 

Goldstein NS, Soman A, Gordon SC (2001) Portal tract eosinophils and hepatocyte cytokeratin 7 immunoreactivity helps distinguish early-stage, mildly active primary biliary cirrhosis and autoimmune hepatitis. Am J Clin Pathol 116:846–853. https://doi.org/10.1309/VHHD-HTRU-N8J2-5X7R

Article  CAS  PubMed  Google Scholar 

Komi N, Udaka H, Ikeda N et al (1977) Congenital dilatation of the biliary tract; new classification and study with particular reference to anomalous arrangement of the pancreaticobiliary ducts. Gastroenterol Jpn 12:293–304. https://doi.org/10.1007/BF02776798

Article  CAS  PubMed  Google Scholar 

Urushihara N, Hamada Y, Kamisawa T et al (2017) Classification of pancreaticobiliary maljunction and clinical features in children. J Hepato-Bil-Pan Sci 24:449–455. https://doi.org/10.1002/jhbp.485

Article  Google Scholar 

Fedorov A, Beichel R, Kalpathy-Cramer J et al (2012) 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30:1323–1341. https://doi.org/10.1016/j.mri.2012.05.001

Article  PubMed  PubMed Central  Google Scholar 

Ding C, Peng H (2005) Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol 3:185–205. https://doi.org/10.1142/s0219720005001004

Article  CAS  PubMed  Google Scholar 

Tibshirani R (2011) Regression shrinkage and selection via the lasso: a retrospective. Journal of the Royal Statistical Society. Series B, Statistical methodology 73:273–282. https://doi.org/10.1111/j.1467-9868.2011.00771.x

Article  Google Scholar 

Collins GS, Reitsma JB, Altman DG et al (2015) Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis Or Diagnosis (TRIPOD): the TRIPOD statement. J Clin Epidemiol 68:112–121. https://doi.org/10.1016/j.jclinepi.2014.11.010

Article  Google Scholar 

Yang F, Wan Y, Xu L et al (2021) MRI-radiomics prediction for cytokeratin 19-positive hepatocellular carcinoma: a multicenter study. Front Oncol 11:672126

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu Z, Ding J, Pang H et al (2022) A triple-classification for differentiating renal oncocytoma from renal cell carcinoma subtypes and CK7 expression evaluation: a radiomics analysis. Bmc Urol 22:147. https://doi.org/10.1186/s12894-022-01099-0

Comments (0)

No login
gif