Kamisawa T, Ando H, Suyama M et al (2012) Japanese clinical practice guidelines for pancreaticobiliary maljunction. J Gastroenterol 47:731–759. https://doi.org/10.1007/s00535-012-0611-2
Ono A, Arizono S, Isoda H et al (2020) Imaging of pancreaticobiliary maljunction. Radiographics 40:378–392. https://doi.org/10.1148/rg.2020190108
Ono S, Fumino S, Iwai N (2011) Diagnosis and treatment of pancreaticobiliary maljunction in children. Surg Today 41:601–605. https://doi.org/10.1007/s00595-010-4492-9
Shearn CT, Fennimore B, Orlicky DJ et al (2019) Cholestatic liver disease results increased production of reactive aldehydes and an atypical periportal hepatic antioxidant response. Free Radic Biol Med 143:101–114. https://doi.org/10.1016/j.freeradbiomed.2019.07.036
Article CAS PubMed PubMed Central Google Scholar
Kim YJ, Kim SH, Yoo SY et al (2022) Comparison of clinical and radiologic findings between perforated and non-perforated choledochal cysts in children. Korean J Radiol 23:271–279. https://doi.org/10.3348/kjr.2021.0169
Article PubMed PubMed Central Google Scholar
Zhu L, Xiong J, Lv Z et al (2020) Type C pancreaticobiliary maljunction is associated with perforated choledochal cyst in children. Front Pediatr 8:168. https://doi.org/10.3389/fped.2020.00168
Article PubMed PubMed Central Google Scholar
Kamisawa T, Kaneko K, Itoi T et al (2017) Pancreaticobiliary maljunction and congenital biliary dilatation. The Lancet Gastroenterology&Hepatology 2:610–618. https://doi.org/10.1016/S2468-1253(17)30002-X
European Association for the Study of the Liver (2009) EASL Clinical Practice Guidelines: management of cholestatic liver diseases. J Hepatol 51:237–267. https://doi.org/10.1016/j.jhep.2009.04.009
Van Eyken P, Sciot R, Desmet VJ (1989) A cytokeratin immunohistochemical study of cholestatic liver disease: evidence that hepatocytes can express “bile duct-type” cytokeratins. Histopathology 15:125–135. https://doi.org/10.1111/j.1365-2559.1989.tb03060.x
Yabushita K, Yamamoto K, Ibuki N et al (2001) Aberrant expression of cytokeratin 7 as a histological marker of progression in primary biliary cirrhosis. Liver 21:50–55. https://doi.org/10.1034/j.1600-0676.2001.210108.x
Article CAS PubMed Google Scholar
Sjöblom N, Boyd S, Manninen A et al (2021) Chronic cholestasis detection by a novel tool: automated analysis of cytokeratin 7-stained liver specimens. Diagn Pathol 16:41. https://doi.org/10.1186/s13000-021-01102-6
Article CAS PubMed PubMed Central Google Scholar
Santos JL, Kieling CO, Meurer L et al (2009) The extent of biliary proliferation in liver biopsies from patients with biliary atresia at portoenterostomy is associated with the postoperative prognosis. J Pediatr Surg 44:695–701. https://doi.org/10.1016/j.jpedsurg.2008.09.013
Bateman AC, Hübscher SG (2010) Cytokeratin expression as an aid to diagnosis in medical liver biopsies. Histopathology 56:415–425. https://doi.org/10.1111/j.1365-2559.2009.03391.x
Ovchinsky N, Moreira RK, Lefkowitch JH et al (2012) Liver biopsy in modern clinical practice: a pediatric point-of-view. Adv Anat Pathol 19:250–262. https://doi.org/10.1097/PAP.0b013e31825c6a20
Article PubMed PubMed Central Google Scholar
Cuypers E, Claes BSR, Biemans R et al (2022) ‘On the spot’ digital pathology of breast cancer based on single-cell mass spectrometry imaging. Anal Chem 94:6180–6190. https://doi.org/10.1021/acs.analchem.1c05238
Article CAS PubMed PubMed Central Google Scholar
Taqi S, Sami S, Sami L et al (2018) A review of artifacts in histopathology. Journal of Oral and Maxillofacial Pathology 22:279. https://doi.org/10.4103/jomfp.JOMFP_125_15
Article PubMed PubMed Central Google Scholar
Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762. https://doi.org/10.1038/nrclinonc.2017.141
Wang W, Gu D, Wei J et al (2020) A radiomics-based biomarker for cytokeratin 19 status of hepatocellular carcinoma with gadoxetic acid–enhanced MRI. Eur Radiol 30:3004–3014. https://doi.org/10.1007/s00330-019-06585-y
Zhang L, Qi Q, Li Q et al (2022) Ultrasomics prediction for cytokeratin 19 expression in hepatocellular carcinoma: a multicenter study. Front Oncol 12:994456. https://doi.org/10.3389/fonc.2022.994456
Article CAS PubMed PubMed Central Google Scholar
McBee MP, Awan OA, Colucci AT et al (2018) Deep learning in radiology. Acad Radiol 25:1472–1480. https://doi.org/10.1016/j.acra.2018.02.018
Chen Y, Chen J, Zhang Y et al (2021) Preoperative prediction of cytokeratin 19 expression for hepatocellular carcinoma with deep learning radiomics based on gadoxetic acid-enhanced magnetic resonance imaging. J Hepatocell Carcinoma 8:795–808. https://doi.org/10.2147/JHC.S313879
Article PubMed PubMed Central Google Scholar
Yang Y, Zhang X, Zhao L et al (2023) Development of an MRI-based radiomics-clinical model to diagnose liver fibrosis secondary to pancreaticobiliary maljunction in children. J Magn Reson Imaging 58:605–617. https://doi.org/10.1002/jmri.28586
Goldstein NS, Soman A, Gordon SC (2001) Portal tract eosinophils and hepatocyte cytokeratin 7 immunoreactivity helps distinguish early-stage, mildly active primary biliary cirrhosis and autoimmune hepatitis. Am J Clin Pathol 116:846–853. https://doi.org/10.1309/VHHD-HTRU-N8J2-5X7R
Article CAS PubMed Google Scholar
Komi N, Udaka H, Ikeda N et al (1977) Congenital dilatation of the biliary tract; new classification and study with particular reference to anomalous arrangement of the pancreaticobiliary ducts. Gastroenterol Jpn 12:293–304. https://doi.org/10.1007/BF02776798
Article CAS PubMed Google Scholar
Urushihara N, Hamada Y, Kamisawa T et al (2017) Classification of pancreaticobiliary maljunction and clinical features in children. J Hepato-Bil-Pan Sci 24:449–455. https://doi.org/10.1002/jhbp.485
Fedorov A, Beichel R, Kalpathy-Cramer J et al (2012) 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30:1323–1341. https://doi.org/10.1016/j.mri.2012.05.001
Article PubMed PubMed Central Google Scholar
Ding C, Peng H (2005) Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol 3:185–205. https://doi.org/10.1142/s0219720005001004
Article CAS PubMed Google Scholar
Tibshirani R (2011) Regression shrinkage and selection via the lasso: a retrospective. Journal of the Royal Statistical Society. Series B, Statistical methodology 73:273–282. https://doi.org/10.1111/j.1467-9868.2011.00771.x
Collins GS, Reitsma JB, Altman DG et al (2015) Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis Or Diagnosis (TRIPOD): the TRIPOD statement. J Clin Epidemiol 68:112–121. https://doi.org/10.1016/j.jclinepi.2014.11.010
Yang F, Wan Y, Xu L et al (2021) MRI-radiomics prediction for cytokeratin 19-positive hepatocellular carcinoma: a multicenter study. Front Oncol 11:672126
Article CAS PubMed PubMed Central Google Scholar
Yu Z, Ding J, Pang H et al (2022) A triple-classification for differentiating renal oncocytoma from renal cell carcinoma subtypes and CK7 expression evaluation: a radiomics analysis. Bmc Urol 22:147. https://doi.org/10.1186/s12894-022-01099-0
Comments (0)