Guidance for industry and FDA staff: Criteria for significant risk investigations of magnetic resonance diagnostic devices (2014) Center for Devices and Radiologic Health. US Food and Drug Administration. US Dept of Health and Human Services. https://www.fda.gov/media/71385/download
Kraff O, Quick HH (2019) Radiofrequency coils for 7 tesla MRI. Top Magn Reson Imaging 28:145–158
Collins CM, Wang Z (2011) Calculation of radiofrequency electromagnetic fields and their effects in MRI of human subjects. Magn Reson Med 65:1470–1482
Article PubMed PubMed Central Google Scholar
Malik SJ, Hand JW, Satnarine R et al (2021) Specific absorption rate and temperature in neonate models resulting from exposure to a 7T head coil. Magn Reson Med 86:1299–1313
Article PubMed PubMed Central Google Scholar
Malik SJ, Hand JW, Carmichael DW et al (2022) Evaluation of specific absorption rate and heating in children exposed to a 7T MRI head coil. Magn Reson Med 88:1434–1449
Article PubMed PubMed Central Google Scholar
van Ooijen IM, Annink KV, Benders M et al (2023) Introduction of ultra-high-field MR brain imaging in infants: vital parameters, temperature and comfort. Neuroimage Rep 3:100175
Article PubMed PubMed Central Google Scholar
De La Fuente M, Ilie C, Bridgen P et al (2023) 823 Ultra-high field 7 tesla magnetic resonance brain imaging in neonates: feasibility studies. Arch Dis Child 108:A161–A163
Bridgen P, Tomi-Tricot R, Uus A et al (2023) High resolution and contrast 7 tesla MR brain imaging of the neonate. Front Radiol 3:1327075
Akbar AF, Sayyid ZN, Roberts DC et al (2023) Acoustic noise levels in high-field magnetic resonance imaging scanners. OTO Open 7:e79
Article PubMed PubMed Central Google Scholar
Occupational Safety and Health Administration (1970) Occupational safety and health standards: occupational health and environmental control (Standard No. 1910.95). https://www.osha.gov/laws-regs/regulations/standardnumber/1910/1910.95
Theysohn JM, Maderwald S, Kraff O et al (2008) Subjective acceptance of 7 tesla MRI for human imaging. MAGMA 21:63–72
Pogson JM, Shemesh A, Roberts DC et al (2023) Longer duration entry mitigates nystagmus and vertigo in 7-Tesla MRI. Front Neurol 14:1255105
Article PubMed PubMed Central Google Scholar
Harris AD, Singer HS, Horska A et al (2016) GABA and glutamate in children with primary complex motor stereotypies: an 1H-MRS study at 7T. AJNR Am J Neuroradiol 37:552–557
Article CAS PubMed PubMed Central Google Scholar
Vecchiato K, Casella C, Dokumaci AS et al (2024) High-Field 7T MRI in a drug-resistant paediatric epilepsy cohort: image comparison and radiological outcomes. medRxiv:2024.2008.2019.24312117
Chen B, Schoemberg T, Kraff O et al (2016) Cranial fixation plates in cerebral magnetic resonance imaging: a 3 and 7 Tesla in vivo image quality study. MAGMA 29:389–398
Wezel J, Kooij BJ, Webb AG (2014) Assessing the MR compatibility of dental retainer wires at 7 tesla. Magn Reson Med 72:1191–1198
Mirzayan MJ, Klinge PM, Samii M et al (2012) MRI safety of a programmable shunt assistant at 3 and 7 tesla. Br J Neurosurg 26:397–400
Chen B, Dammann P, Jabbarli R et al (2023) Safety and function of programmable ventriculo-peritoneal shunt valves: an in vitro 7 tesla magnetic resonance imaging study. PLoS ONE 18:e0292666
Article CAS PubMed PubMed Central Google Scholar
Bridgen P, Malik S, Wilkinson T et al (2023) Reliability and safety of anaesthetic equipment around an high-field 7-tesla MRI scanner. Br J Anaesth 130:e490–e492
King’s College London (2023) World first 7T MRI scan under general anaesthesia [Press release]. https://www.kcl.ac.uk/news/world-first-7t-mri-scan-under-general-anaesthesia
Le Ster C, Grant A, Van de Moortele PF et al (2022) Magnetic field strength dependent SNR gain at the center of a spherical phantom and up to 11.7T. Magn Reson Med 88:2131–2138
Article PubMed PubMed Central Google Scholar
Polak D, Setsompop K, Cauley SF et al (2018) Wave-CAIPI for highly accelerated MP-RAGE imaging. Magn Reson Med 79:401–406
Peters AM, Brookes MJ, Hoogenraad FG et al (2007) T2* measurements in human brain at 1.5, 3 and 7 T. Magn Reson Imaging 25:748–753
Wright PJ, Mougin OE, Totman JJ et al (2008) Water proton T1 measurements in brain tissue at 7, 3, and 1.5 T using IR-EPI, IR-TSE, and MPRAGE: results and optimization. MAGMA 21:121–130
Article CAS PubMed Google Scholar
Noebauer-Huhmann IM, Szomolanyi P, Kronnerwetter C et al (2015) Brain tumours at 7T MRI compared to 3T–contrast effect after half and full standard contrast agent dose: initial results. Eur Radiol 25:106–112
Tao S, Zhou X, Greco E et al (2023) Edge-enhancing gradient-echo MP2RAGE for clinical epilepsy imaging at 7T. AJNR Am J Neuroradiol 44:268–270
Article CAS PubMed PubMed Central Google Scholar
Dokumaci AS, Aitken FR, Sedlacik J et al (2023) Simultaneous optimization of MP2RAGE T(1) -weighted (UNI) and fluid and white matter suppression (FLAWS) brain images at 7T using extended phase graph (EPG) simulations. Magn Reson Med 89:937–950
Article CAS PubMed Google Scholar
Middlebrooks EH, Lin C, Westerhold E et al (2020) Improved detection of focal cortical dysplasia using a novel 3D imaging sequence: edge-enhancing gradient echo (3D-EDGE) MRI. Neuroimage Clin 28:102449
Article PubMed PubMed Central Google Scholar
Demerath T, Rubensdorfer L, Schwarzwald R et al (2020) Morphometric MRI analysis: improved detection of focal cortical dysplasia using the MP2RAGE sequence. AJNR Am J Neuroradiol 41:1009–1014
Article CAS PubMed PubMed Central Google Scholar
van der Kolk AG, Zwanenburg JJ, Brundel M et al (2011) Intracranial vessel wall imaging at 7.0-T MRI. Stroke 42:2478–2484
Lindenholz A, van der Kolk AG, van der Schaaf IC et al (2020) Intracranial atherosclerosis assessed with 7-T MRI: evaluation of patients with ischemic stroke or transient ischemic attack. Radiology 295:162–170
Lang M, Colby S, Ashby-Padial C et al (2024) An imaging review of the hippocampus and its common pathologies. J Neuroimaging 34:5–25
Perosa V, Rotta J, Yakupov R et al (2023) Implications of quantitative susceptibility mapping at 7 tesla MRI for microbleeds detection in cerebral small vessel disease. Front Neurol 14:1112312
Article PubMed PubMed Central Google Scholar
Conijn MM, Geerlings MI, Biessels GJ et al (2011) Cerebral microbleeds on MR imaging: comparison between 1.5 and 7T. AJNR Am J Neuroradiol 32:1043–1049
Article CAS PubMed PubMed Central Google Scholar
Ugurbil K, Xu J, Auerbach EJ et al (2013) Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project. Neuroimage 80:80–104
Article CAS PubMed Google Scholar
Heidemann RM, Porter DA, Anwander A et al (2010) Diffusion imaging in humans at 7T using readout-segmented EPI and GRAPPA. Magn Reson Med 64:9–14
van der Zwaag W, Francis S, Head K et al (2009) fMRI at 1.5, 3 and 7 T: characterising BOLD signal changes. Neuroimage 47:1425–1434
Comments (0)