THEMIS2 contributes to ovarian cancer metastasis via DOCK4-mediated activation of Rap1 signaling

F. Bray, M. Laversanne, H. Sung, J. Ferlay, R.L. Siegel, I. Soerjomataram, A. Jemal, Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 74, 229–263 (2024). https://doi.org/10.3322/caac.21834

Article  PubMed  Google Scholar 

R.L. Siegel, K.D. Miller, N.S. Wagle, A. Jemal, Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48 (2023). https://doi.org/10.3322/caac.21763

Article  PubMed  Google Scholar 

D. Dhaliwal, T.G. Shepherd, Molecular and cellular mechanisms controlling integrin-mediated cell adhesion and tumor progression in ovarian cancer metastasis: a review. Clin. Exp. Metastasis. 39, 291–301 (2022). https://doi.org/10.1007/s10585-021-10136-5

Article  CAS  PubMed  Google Scholar 

K.D. Miller, L. Nogueira, T. Devasia, A.B. Mariotto, K.R. Yabroff, A. Jemal, J. Kramer, R.L. Siegel, Cancer treatment and survivorship statistics, 2022. CA Cancer J. Clin. 72, 409–436 (2022). https://doi.org/10.3322/caac.21731

Article  PubMed  Google Scholar 

J. Yang, P. Antin, G. Berx, C. Blanpain, T. Brabletz, M. Bronner, K. Campbell, A. Cano, J. Casanova, G. Christofori et al., Guidelines and definitions for research on epithelial-mesenchymal transition. Nat. Rev. Mol. Cell. Biol. 21, 341–352 (2020). https://doi.org/10.1038/s41580-020-0237-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

S. Mei, X. Chen, K. Wang, Y. Chen, Tumor microenvironment in ovarian cancer peritoneal metastasis. Cancer Cell. Int. 23, 11 (2023). https://doi.org/10.1186/s12935-023-02854-5

Article  PubMed  PubMed Central  Google Scholar 

V. Tadic, W. Zhang, A. Brozovic, The high-grade serous ovarian cancer metastasis and chemoresistance in 3D models. Biochim. Biophys. Acta Rev. Cancer. 1879, 189052 (2024). https://doi.org/10.1016/j.bbcan.2023.189052

Article  CAS  PubMed  Google Scholar 

C.M. Fife, J.A. McCarroll, M. Kavallaris, Movers and shakers: cell cytoskeleton in cancer metastasis. Br. J. Pharmacol. 171, 5507–5523 (2014). https://doi.org/10.1111/bph.12704

Article  CAS  PubMed  PubMed Central  Google Scholar 

O. Treeck, E. Strunck, G. Vollmer, A novel basement membrane-induced gene identified in the human endometrial adenocarcinoma cell line HEC1B. FEBS Lett. 425, 426–430 (1998). https://doi.org/10.1016/s0014-5793(98)00278-6

Article  CAS  PubMed  Google Scholar 

R. Lesourne, E. Zvezdova, K.D. Song, D. El-Khoury, S. Uehara, V.A. Barr, L.E. Samelson, P.E. Love, Interchangeability of Themis1 and Themis2 in thymocyte development reveals two related proteins with conserved molecular function. J. Immunol. 189, 1154–1161 (2012). https://doi.org/10.4049/jimmunol.1200123

Article  CAS  PubMed  Google Scholar 

M.J. Peirce, M. Brook, N. Morrice, R. Snelgrove, S. Begum, A. Lanfrancotti, C. Notley, T. Hussell, A.P. Cope, R. Wait, Themis2/ICB1 is a signaling scaffold that selectively regulates macrophage Toll-like receptor signaling and cytokine production. PLoS One. 5, e11465 (2010). https://doi.org/10.1371/journal.pone.0011465

Article  CAS  PubMed  PubMed Central  Google Scholar 

T. Nabekura, E.A. Deborah, S. Tahara, Y. Arai, P.E. Love, K. Kako, A. Fukamizu, M. Muratani, A. Shibuya, Themis2 regulates natural killer cell memory function and formation. Nat. Commun. 14 (2023). https://doi.org/10.1038/s41467-023-42578-8

E.A. Deborah, T. Nabekura, K. Shibuya, A. Shibuya, THEMIS2 impairs antitumor activity of NK cells by suppressing activating NK receptor signaling. J. Immunol. 212, 1819–1828 (2024). https://doi.org/10.4049/jimmunol.2300771

Article  CAS  PubMed  Google Scholar 

J. Bollmann, O. Ortmann, O. Treeck, Expression of differentiation-associated gene icb-1 is estrogen-responsive in ovarian and breast cancer cell lines. J. Steroid Biochem. Mol. Biol. 109, 16–21 (2008). https://doi.org/10.1016/j.jsbmb.2007.12.007

Article  CAS  PubMed  Google Scholar 

Y. Yamada, T. Miyamoto, S. Higuchi, M. Ono, H. Kobara, R. Asaka, H. Ando, A. Suzuki, T. Shiozawa, cDNA expression library screening revealed novel functional genes involved in clear cell carcinogenesis of the ovary in vitro. J. Obstet. Gynaecol. 41, 100–105 (2021). https://doi.org/10.1080/01443615.2020.1716310

Article  CAS  PubMed  Google Scholar 

Y. Gao, Y. Qi, Y. Shen, Y. Zhang, D. Wang, M. Su, X. Liu, A. Wang, W. Zhang, C. He et al., Signatures of tumor-associated macrophages correlate with treatment response in ovarian cancer patients. Aging (Albany NY). 16, 207–225 (2024). https://doi.org/10.18632/aging.205362

Article  CAS  PubMed  Google Scholar 

W.C. Huang, J.H. Yen, Y.W. Sung, S.L. Tung, P.M. Chen, P.Y. Chu, Y.C. Shih, H.C. Chi, Y.C. Huang, S.J. Huang, L.H. Wang, Novel function of THEMIS2 in the enhancement of cancer stemness and chemoresistance by releasing PTP1B from MET. Oncogene. 41, 997–1010 (2022). https://doi.org/10.1038/s41388-021-02136-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

C.L. Bailey, P. Kelly, P.J. Casey, Activation of Rap1 promotes prostate cancer metastasis. Cancer Res. 69, 4962–4968 (2009). https://doi.org/10.1158/0008-5472.CAN-08-4269

Article  CAS  PubMed  PubMed Central  Google Scholar 

M. Itoh, C.M. Nelson, C.A. Myers, M.J. Bissell, Rap1 integrates tissue Polarity, lumen formation, and tumorigenic potential in human breast epithelial cells. Cancer Res. 67, 4759–4766 (2007). https://doi.org/10.1158/0008-5472.CAN-06-4246

Article  CAS  PubMed  PubMed Central  Google Scholar 

M. Huang, C. Liang, S. Li, J. Zhang, D. Guo, B. Zhao, Y. Liu, Y. Peng, J. Xu, W. Liu et al., Two autism/dyslexia linked variations of DOCK4 disrupt the gene function on Rac1/Rap1 activation, neurite outgrowth, and synapse development. Front. Cell. Neurosci. 13, 577 (2019). https://doi.org/10.3389/fncel.2019.00577

Article  CAS  PubMed  Google Scholar 

P. Yazbeck, X. Cullere, P. Bennett, V. Yajnik, H. Wang, K. Kawada, V.M. Davis, A. Parikh, A. Kuo, V. Mysore et al., DOCK4 regulation of Rho GTPases mediates pulmonary vascular barrier function. Arterioscler. Thromb. Vasc Biol. 42, 886–902 (2022). https://doi.org/10.1161/ATVBAHA.122.317565

Article  CAS  PubMed  PubMed Central  Google Scholar 

M. Kobayashi, K. Harada, M. Negishi, H. Katoh, Dock4 forms a complex with SH3YL1 and regulates cancer cell migration. Cell. Signal. 26, 1082–1088 (2014). https://doi.org/10.1016/j.cellsig.2014.01.027

Article  CAS  PubMed  Google Scholar 

J.J. Bravo-Cordero, M.A. Magalhaes, R.J. Eddy, L. Hodgson, J. Condeelis, Functions of Cofilin in cell locomotion and invasion. Nat. Rev. Mol. Cell. Biol. 14, 405–415 (2013). https://doi.org/10.1038/nrm3609

Article  CAS  PubMed  Google Scholar 

A. Hall, The cellular functions of small GTP-binding proteins. Science. 249, 635–640 (1990). https://doi.org/10.1126/science.2116664

Article  CAS  PubMed  Google Scholar 

H. Ungefroren, D. Witte, H. Lehnert, The role of small GTPases of the Rho/Rac family in TGF-beta-induced EMT and cell motility in cancer. Dev. Dyn. 247, 451–461 (2018). https://doi.org/10.1002/dvdy.24505

Article  CAS  PubMed  Google Scholar 

V. Yajnik, C. Paulding, R. Sordella, A.I. McClatchey, M. Saito, D.C. Wahrer, P. Reynolds, D.W. Bell, R. Lake, van den S. Heuvel et al., DOCK4, a GTPase activator, is disrupted during tumorigenesis. Cell. 112, 673–684 (2003). https://doi.org/10.1016/s0092-8674(03)00155-7

Article  CAS  PubMed  Google Scholar 

A.W. Lambert, D.R. Pattabiraman, R.A. Weinberg, Emerg. Biol. Principles Metastasis Cell. 168, 670–691 (2017). https://doi.org/10.1016/j.cell.2016.11.037

Article  CAS  Google Scholar 

A. Springwald, C. Lattrich, M. Skrzypczak, R. Goerse, O. Ortmann, O. Treeck, Icb-1 gene expression is elevated in human endometrial adenocarcinoma and is closely associated with HER2 expression. Cancer Invest. 28, 904–909 (2010). https://doi.org/10.3109/07357907.2010.483511

Comments (0)

No login
gif