F. Bray, M. Laversanne, H. Sung, J. Ferlay, R.L. Siegel, I. Soerjomataram, A. Jemal, Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 74, 229–263 (2024). https://doi.org/10.3322/caac.21834
R.L. Siegel, K.D. Miller, N.S. Wagle, A. Jemal, Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48 (2023). https://doi.org/10.3322/caac.21763
D. Dhaliwal, T.G. Shepherd, Molecular and cellular mechanisms controlling integrin-mediated cell adhesion and tumor progression in ovarian cancer metastasis: a review. Clin. Exp. Metastasis. 39, 291–301 (2022). https://doi.org/10.1007/s10585-021-10136-5
Article CAS PubMed Google Scholar
K.D. Miller, L. Nogueira, T. Devasia, A.B. Mariotto, K.R. Yabroff, A. Jemal, J. Kramer, R.L. Siegel, Cancer treatment and survivorship statistics, 2022. CA Cancer J. Clin. 72, 409–436 (2022). https://doi.org/10.3322/caac.21731
J. Yang, P. Antin, G. Berx, C. Blanpain, T. Brabletz, M. Bronner, K. Campbell, A. Cano, J. Casanova, G. Christofori et al., Guidelines and definitions for research on epithelial-mesenchymal transition. Nat. Rev. Mol. Cell. Biol. 21, 341–352 (2020). https://doi.org/10.1038/s41580-020-0237-9
Article CAS PubMed PubMed Central Google Scholar
S. Mei, X. Chen, K. Wang, Y. Chen, Tumor microenvironment in ovarian cancer peritoneal metastasis. Cancer Cell. Int. 23, 11 (2023). https://doi.org/10.1186/s12935-023-02854-5
Article PubMed PubMed Central Google Scholar
V. Tadic, W. Zhang, A. Brozovic, The high-grade serous ovarian cancer metastasis and chemoresistance in 3D models. Biochim. Biophys. Acta Rev. Cancer. 1879, 189052 (2024). https://doi.org/10.1016/j.bbcan.2023.189052
Article CAS PubMed Google Scholar
C.M. Fife, J.A. McCarroll, M. Kavallaris, Movers and shakers: cell cytoskeleton in cancer metastasis. Br. J. Pharmacol. 171, 5507–5523 (2014). https://doi.org/10.1111/bph.12704
Article CAS PubMed PubMed Central Google Scholar
O. Treeck, E. Strunck, G. Vollmer, A novel basement membrane-induced gene identified in the human endometrial adenocarcinoma cell line HEC1B. FEBS Lett. 425, 426–430 (1998). https://doi.org/10.1016/s0014-5793(98)00278-6
Article CAS PubMed Google Scholar
R. Lesourne, E. Zvezdova, K.D. Song, D. El-Khoury, S. Uehara, V.A. Barr, L.E. Samelson, P.E. Love, Interchangeability of Themis1 and Themis2 in thymocyte development reveals two related proteins with conserved molecular function. J. Immunol. 189, 1154–1161 (2012). https://doi.org/10.4049/jimmunol.1200123
Article CAS PubMed Google Scholar
M.J. Peirce, M. Brook, N. Morrice, R. Snelgrove, S. Begum, A. Lanfrancotti, C. Notley, T. Hussell, A.P. Cope, R. Wait, Themis2/ICB1 is a signaling scaffold that selectively regulates macrophage Toll-like receptor signaling and cytokine production. PLoS One. 5, e11465 (2010). https://doi.org/10.1371/journal.pone.0011465
Article CAS PubMed PubMed Central Google Scholar
T. Nabekura, E.A. Deborah, S. Tahara, Y. Arai, P.E. Love, K. Kako, A. Fukamizu, M. Muratani, A. Shibuya, Themis2 regulates natural killer cell memory function and formation. Nat. Commun. 14 (2023). https://doi.org/10.1038/s41467-023-42578-8
E.A. Deborah, T. Nabekura, K. Shibuya, A. Shibuya, THEMIS2 impairs antitumor activity of NK cells by suppressing activating NK receptor signaling. J. Immunol. 212, 1819–1828 (2024). https://doi.org/10.4049/jimmunol.2300771
Article CAS PubMed Google Scholar
J. Bollmann, O. Ortmann, O. Treeck, Expression of differentiation-associated gene icb-1 is estrogen-responsive in ovarian and breast cancer cell lines. J. Steroid Biochem. Mol. Biol. 109, 16–21 (2008). https://doi.org/10.1016/j.jsbmb.2007.12.007
Article CAS PubMed Google Scholar
Y. Yamada, T. Miyamoto, S. Higuchi, M. Ono, H. Kobara, R. Asaka, H. Ando, A. Suzuki, T. Shiozawa, cDNA expression library screening revealed novel functional genes involved in clear cell carcinogenesis of the ovary in vitro. J. Obstet. Gynaecol. 41, 100–105 (2021). https://doi.org/10.1080/01443615.2020.1716310
Article CAS PubMed Google Scholar
Y. Gao, Y. Qi, Y. Shen, Y. Zhang, D. Wang, M. Su, X. Liu, A. Wang, W. Zhang, C. He et al., Signatures of tumor-associated macrophages correlate with treatment response in ovarian cancer patients. Aging (Albany NY). 16, 207–225 (2024). https://doi.org/10.18632/aging.205362
Article CAS PubMed Google Scholar
W.C. Huang, J.H. Yen, Y.W. Sung, S.L. Tung, P.M. Chen, P.Y. Chu, Y.C. Shih, H.C. Chi, Y.C. Huang, S.J. Huang, L.H. Wang, Novel function of THEMIS2 in the enhancement of cancer stemness and chemoresistance by releasing PTP1B from MET. Oncogene. 41, 997–1010 (2022). https://doi.org/10.1038/s41388-021-02136-2
Article CAS PubMed PubMed Central Google Scholar
C.L. Bailey, P. Kelly, P.J. Casey, Activation of Rap1 promotes prostate cancer metastasis. Cancer Res. 69, 4962–4968 (2009). https://doi.org/10.1158/0008-5472.CAN-08-4269
Article CAS PubMed PubMed Central Google Scholar
M. Itoh, C.M. Nelson, C.A. Myers, M.J. Bissell, Rap1 integrates tissue Polarity, lumen formation, and tumorigenic potential in human breast epithelial cells. Cancer Res. 67, 4759–4766 (2007). https://doi.org/10.1158/0008-5472.CAN-06-4246
Article CAS PubMed PubMed Central Google Scholar
M. Huang, C. Liang, S. Li, J. Zhang, D. Guo, B. Zhao, Y. Liu, Y. Peng, J. Xu, W. Liu et al., Two autism/dyslexia linked variations of DOCK4 disrupt the gene function on Rac1/Rap1 activation, neurite outgrowth, and synapse development. Front. Cell. Neurosci. 13, 577 (2019). https://doi.org/10.3389/fncel.2019.00577
Article CAS PubMed Google Scholar
P. Yazbeck, X. Cullere, P. Bennett, V. Yajnik, H. Wang, K. Kawada, V.M. Davis, A. Parikh, A. Kuo, V. Mysore et al., DOCK4 regulation of Rho GTPases mediates pulmonary vascular barrier function. Arterioscler. Thromb. Vasc Biol. 42, 886–902 (2022). https://doi.org/10.1161/ATVBAHA.122.317565
Article CAS PubMed PubMed Central Google Scholar
M. Kobayashi, K. Harada, M. Negishi, H. Katoh, Dock4 forms a complex with SH3YL1 and regulates cancer cell migration. Cell. Signal. 26, 1082–1088 (2014). https://doi.org/10.1016/j.cellsig.2014.01.027
Article CAS PubMed Google Scholar
J.J. Bravo-Cordero, M.A. Magalhaes, R.J. Eddy, L. Hodgson, J. Condeelis, Functions of Cofilin in cell locomotion and invasion. Nat. Rev. Mol. Cell. Biol. 14, 405–415 (2013). https://doi.org/10.1038/nrm3609
Article CAS PubMed Google Scholar
A. Hall, The cellular functions of small GTP-binding proteins. Science. 249, 635–640 (1990). https://doi.org/10.1126/science.2116664
Article CAS PubMed Google Scholar
H. Ungefroren, D. Witte, H. Lehnert, The role of small GTPases of the Rho/Rac family in TGF-beta-induced EMT and cell motility in cancer. Dev. Dyn. 247, 451–461 (2018). https://doi.org/10.1002/dvdy.24505
Article CAS PubMed Google Scholar
V. Yajnik, C. Paulding, R. Sordella, A.I. McClatchey, M. Saito, D.C. Wahrer, P. Reynolds, D.W. Bell, R. Lake, van den S. Heuvel et al., DOCK4, a GTPase activator, is disrupted during tumorigenesis. Cell. 112, 673–684 (2003). https://doi.org/10.1016/s0092-8674(03)00155-7
Article CAS PubMed Google Scholar
A.W. Lambert, D.R. Pattabiraman, R.A. Weinberg, Emerg. Biol. Principles Metastasis Cell. 168, 670–691 (2017). https://doi.org/10.1016/j.cell.2016.11.037
A. Springwald, C. Lattrich, M. Skrzypczak, R. Goerse, O. Ortmann, O. Treeck, Icb-1 gene expression is elevated in human endometrial adenocarcinoma and is closely associated with HER2 expression. Cancer Invest. 28, 904–909 (2010). https://doi.org/10.3109/07357907.2010.483511
Comments (0)