An interpretable radiomics-based machine learning model for predicting reverse left ventricular remodeling in STEMI patients using late gadolinium enhancement of myocardial scar

Aimo A, Gaggin HK, Barison A, Emdin M, Januzzi JL (2019) Imaging, biomarker, and clinical predictors of cardiac remodeling in heart failure with reduced ejection fraction. JACC Heart Fail 7:782–794

PubMed  Google Scholar 

Huttin O, Mandry D, Eschalier R et al (2017) Cardiac remodeling following reperfused acute myocardial infarction is linked to the concomitant evolution of vascular function as assessed by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 19:2

PubMed  PubMed Central  Google Scholar 

Reindl M, Tiller C, Holzknecht M et al (2020) Global longitudinal strain by feature tracking for optimized prediction of adverse remodeling after ST-elevation myocardial infarction. Clin Res Cardiol 110:61–71

PubMed  Google Scholar 

Smiseth OA, Torp H, Opdahl A, Haugaa KH, Urheim S (2015) Myocardial strain imaging: How useful is it in clinical decision making? Eur Heart J 37:1196–1207

PubMed  PubMed Central  Google Scholar 

Koitabashi N, Kass DA (2011) Reverse remodeling in heart failure—mechanisms and therapeutic opportunities. Nat Rev Cardiol 9:147–157

PubMed  Google Scholar 

Breithardt OA (2013) Reversing heart failure by CRT: How long do the effects last? Eur Heart J 34:2582–2584

PubMed  Google Scholar 

Mann DL, Barger PM, Burkhoff D (2012) Myocardial recovery and the failing heart. J Am Coll Cardiol 60:2465–2472

PubMed  PubMed Central  Google Scholar 

Groot HE, Al Ali L, van der Horst ICC et al (2018) Plasma interleukin 6 levels are associated with cardiac function after ST-elevation myocardial infarction. Clin Res Cardiol 108:612–621

PubMed  PubMed Central  Google Scholar 

Reinstadler SJ, Thiele H, Eitel I (2015) Risk stratification by cardiac magnetic resonance imaging after ST-elevation myocardial infarction. Curr Opin Cardiol 30:681–689

PubMed  Google Scholar 

Cui J, Zhao Y, Qian G, Yue X, Luo C, Li T (2023) Cardiac magnetic resonance for the early prediction of reverse left ventricular remodeling in patients with ST-segment elevation myocardial infarction. Eur Radiol 33:8501–8512

PubMed  Google Scholar 

Bodi V, Monmeneu JV, Ortiz-Perez JT et al (2016) Prediction of reverse remodeling at cardiac MR imaging soon after first ST-segment–elevation myocardial infarction: results of a large prospective registry. Radiology 278:54–63

PubMed  Google Scholar 

Chen BH, An DA, He J, Xu JR, Wu LM, Pu J (2020) Myocardial extracellular volume fraction allows differentiation of reversible versus irreversible myocardial damage and prediction of adverse left ventricular remodeling of ST-elevation myocardial infarction. J Magn Reson Imaging 52:476–487

PubMed  Google Scholar 

Ma Q, Ma Y, Yu T, Sun Z, Hou Y (2021) Radiomics of non-contrast-enhanced T1 mapping: diagnostic and predictive performance for myocardial injury in acute ST-segment-elevation myocardial infarction. Korean J Radiol 22:535

PubMed  Google Scholar 

Nie P, Yang G, Wang Z et al (2019) A CT-based radiomics nomogram for differentiation of renal angiomyolipoma without visible fat from homogeneous clear cell renal cell carcinoma. Eur Radiol 30:1274–1284

PubMed  Google Scholar 

Ji G-W, Zhu F-P, Zhang Y-D et al (2019) A radiomics approach to predict lymph node metastasis and clinical outcome of intrahepatic cholangiocarcinoma. Eur Radiol 29:3725–3735

PubMed  Google Scholar 

Wang Y, Liu W, Yu Y et al (2019) CT radiomics nomogram for the preoperative prediction of lymph node metastasis in gastric cancer. Eur Radiol 30:976–986

PubMed  Google Scholar 

Lewis M, Elad G, Beladev M et al (2021) Comparison of deep learning with traditional models to predict preventable acute care use and spending among heart failure patients. Sci Rep 11:1164

Ribeiro M, Singh S, Guestrin C (2016) “Why Should I Trust You?”: explaining the predictions of any classifier. In: Proceedings of the 2016 conference of the North American chapter of the Association for Computational Linguistics: Demonstrations. Association for Computational Linguistics, pp 1135–1144

Lundberg SM, Nair B, Vavilala MS et al (2018) Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat Biomed Eng 2:749–760

PubMed  PubMed Central  Google Scholar 

White HD, Thygesen K, Alpert JS, Jaffe AS (2013) Clinical implications of the third universal definition of myocardial infarction. Heart 100:424–432

PubMed  Google Scholar 

Zwanenburg A, Vallières M, Abdalah MA et al (2020) The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295:328–338

PubMed  Google Scholar 

Du R, Lee VH, Yuan H et al (2019) Radiomics model to predict early progression of nonmetastatic nasopharyngeal carcinoma after intensity modulation radiation therapy: a multicenter study. Radiol Artif Intell 1:e180075

PubMed  PubMed Central  Google Scholar 

Patil I (2021) Visualizations with statistical details: the ‘ggstatsplot’ approach. J Open Source Softw 6:3167

Huang H, Zhou L, Chen J, Wei T (2020) ggcor: extended tools for correlation analysis and visualization. https://github.com/houyunhuang/ggcor

Kiaos A, Daskalopoulos GN, Kamperidis V, Ziakas A, Efthimiadis G, Karamitsos TD (2024) Quantitative late gadolinium enhancement cardiac magnetic resonance and sudden death in hypertrophic cardiomyopathy: a meta-analysis. JACC Cardiovasc Imaging 17:489–497

PubMed  Google Scholar 

Leiner T, Bogaert J, Friedrich MG et al (2020) SCMR position paper (2020) on clinical indications for cardiovascular magnetic resonance. J Cardiovas Magn Reson 22:76

Google Scholar 

Baessler B, Luecke C, Lurz J et al (2018) Cardiac MRI texture analysis of T1 and T2 maps in patients with infarctlike acute myocarditis. Radiology 289:357–365

PubMed  Google Scholar 

Xin A, Liu M, Chen T et al (2023) Non-contrast cine cardiac magnetic resonance derived-radiomics for the prediction of left ventricular adverse remodeling in patients with ST-segment elevation myocardial infarction. Korean J Radiol 24:827

Google Scholar 

Frantz S, Hundertmark MJ, Schulz-Menger J, Bengel FM, Bauersachs J (2022) Left ventricular remodelling post-myocardial infarction: pathophysiology, imaging, and novel therapies. Eur Heart J 43:2549–2561

CAS  PubMed  PubMed Central  Google Scholar 

Polidori T, De Santis D, Rucci C et al (2023) Radiomics applications in cardiac imaging: a comprehensive review. Radiol Med 128:922–933

PubMed  PubMed Central  Google Scholar 

Cetin I, Raisi-Estabragh Z, Petersen SE et al (2020) Radiomics signatures of cardiovascular risk factors in cardiac MRI: results from the UK Biobank. Front Cardiovasc Med 7:591368

CAS  PubMed  PubMed Central  Google Scholar 

Deng J, Zhou L, Li Y et al (2024) Integration of cine-cardiac magnetic resonance radiomics and machine learning for differentiating ischemic and dilated cardiomyopathy. Acad Radiol 31:2704–2714

PubMed  Google Scholar 

Zhang X, Cui C, Zhao S, Xie L, Tian Y (2023) Cardiac magnetic resonance radiomics for disease classification. Eur Radiol 33:2312–2323

PubMed  Google Scholar 

Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762

PubMed  Google Scholar 

Cheng S, Fang M, Cui C et al (2018) LGE-CMR-derived texture features reflect poor prognosis in hypertrophic cardiomyopathy patients with systolic dysfunction: preliminary results. Eur Radiol 28:4615–4624

PubMed  Google Scholar 

Zhang J, Jin J, Ai Y et al (2020) Computer tomography radiomics-based nomogram in the survival prediction for brain metastases from non-small cell lung cancer underwent whole brain radiotherapy. Front Oncol 10:610691

PubMed  Google Scholar 

Comments (0)

No login
gif