Volkova M, Russell R 3rd. Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment. Curr Cardiol Rev. 2011;7:214–20. https://doi.org/10.2174/157340311799960645.
Article CAS PubMed PubMed Central Google Scholar
Christidi E, Brunham LR. Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell Death Dis. 2021;12:339. https://doi.org/10.1038/s41419-021-03614-x.
Article CAS PubMed PubMed Central Google Scholar
van der Zanden SY, Qiao X, Neefjes J. New insights into the activities and toxicities of the old anticancer drug doxorubicin. FEBS J. 2021;288:6095–111. https://doi.org/10.1111/febs.15583.
Article CAS PubMed Google Scholar
Sheibani M, Azizi Y, Shayan M, et al. Doxorubicin-induced cardiotoxicity: an overview on pre-clinical therapeutic approaches. Cardiovasc Toxicol. 2022;22:292–310. https://doi.org/10.1007/s12012-022-09721-1.
Article CAS PubMed Google Scholar
Shi S, Chen Y, Luo Z, Nie G, Dai Y. Role of oxidative stress and inflammation-related signaling pathways in doxorubicin-induced cardiomyopathy. Cell Commun Signal. 2023;21:61. https://doi.org/10.1186/s12964-023-01077-5.
Article CAS PubMed PubMed Central Google Scholar
Bezhaeva T, Karper J, Quax PHA, de Vries MR. The intriguing role of TLR accessory molecules in cardiovascular health and disease. Front Cardiovasc Med. 2022;9:820962. https://doi.org/10.3389/fcvm.2022.820962.
Article CAS PubMed PubMed Central Google Scholar
Jin W, Zhang Y, Xue Y, et al. Crocin attenuates isoprenaline-induced myocardial fibrosis by targeting TLR4/NF-kappaB signaling: connecting oxidative stress, inflammation, and apoptosis. Naunyn Schmiedebergs Arch Pharmacol. 2020;393:13–23. https://doi.org/10.1007/s00210-019-01704-4.
Article CAS PubMed Google Scholar
Yang Y, Lv J, Jiang S, et al. The emerging role of Toll-like receptor 4 in myocardial inflammation. Cell Death Dis. 2016;7:e2234. https://doi.org/10.1038/cddis.2016.140.
Article CAS PubMed PubMed Central Google Scholar
Riad A, Bien S, Gratz M, et al. Toll-like receptor-4 deficiency attenuates doxorubicin-induced cardiomyopathy in mice. Eur J Heart Fail. 2008;10:233–43. https://doi.org/10.1016/j.ejheart.2008.01.004.
Article CAS PubMed Google Scholar
El-Ela SRA, Zaghloul RA, Eissa LA. Promising cardioprotective effect of baicalin in doxorubicin-induced cardiotoxicity through targeting toll-like receptor 4/nuclear factor-kappaB and Wnt/beta-catenin pathways. Nutrition. 2022;102:111732. https://doi.org/10.1016/j.nut.2022.111732.
Article CAS PubMed Google Scholar
Rajsbaum R, Garcia-Sastre A, Versteeg GA. TRIMmunity: the roles of the TRIM E3-ubiquitin ligase family in innate antiviral immunity. J Mol Biol. 2014;426:1265–84. https://doi.org/10.1016/j.jmb.2013.12.005.
Article CAS PubMed Google Scholar
Wang S, Lu B, Liu J, Gu Y. TRIM27 suppresses inflammation injuries in pediatric pneumonia by targeting TLR4/NF-kappaB signaling pathway. Allergol Immunopathol (Madr). 2022;50:33–9. https://doi.org/10.15586/aei.v50i2.558.
Lu M, Zhu X, Yang Z, et al. E3 ubiquitin ligase tripartite motif 7 positively regulates the TLR4-mediated immune response via its E3 ligase domain in macrophages. Mol Immunol. 2019;109:126–33. https://doi.org/10.1016/j.molimm.2019.01.015.
Article CAS PubMed Google Scholar
Du Y, Chu CM, Zhuo D, Ning JZ. The inhibition of TRIM35-mediated TIGAR ubiquitination enhances mitochondrial fusion and alleviates renal ischemia-reperfusion injury. Int J Biol Macromol. 2022;209:725–36. https://doi.org/10.1016/j.ijbiomac.2022.04.054.
Article CAS PubMed Google Scholar
Kalyanaraman B. Teaching the basics of the mechanism of doxorubicin-induced cardiotoxicity: have we been barking up the wrong tree? Redox Biol. 2020;29:101394. https://doi.org/10.1016/j.redox.2019.101394.
Article CAS PubMed Google Scholar
Chen Y, Shi S, Dai Y. Research progress of therapeutic drugs for doxorubicin-induced cardiomyopathy. Biomed Pharmacother. 2022;156:113903. https://doi.org/10.1016/j.biopha.2022.113903.
Article CAS PubMed Google Scholar
Lorenzana-Carrillo MA, Tejay S, Nanoa J, et al. TRIM35 monoubiquitinates H2B in cardiac cells implications for heart failure. Circ Res. 2024. https://doi.org/10.1161/CIRCRESAHA.123.324202.
Quagliariello V, Vecchione R, Coppola C, et al. Cardioprotective effects of nanoemulsions loaded with anti-inflammatory nutraceuticals against doxorubicin-induced cardiotoxicity. Nutrients. 2018;10. https://doi.org/10.3390/nu10091304.
Liu K, Gu Y, Gu S, et al. Trim27 aggravates airway inflammation and oxidative stress in asthmatic mice via potentiating the NLRP3 inflammasome. Int Immunopharmacol. 2024;134:112199. https://doi.org/10.1016/j.intimp.2024.112199.
Article CAS PubMed Google Scholar
Luo Q, Jahangir A, He J, et al. Ameliorating effects of TRIM67 against intestinal inflammation and barrier dysfunction induced by high fat diet in obese mice. Int J Mol Sci. 2022;23. https://doi.org/10.3390/ijms23147650.
Ortiz-Fernandez L, Carmona EG, Kerick M, et al. Identification of new risk loci shared across systemic vasculitides points towards potential target genes for drug repurposing. Ann Rheum Dis. 2023;82:837–47. https://doi.org/10.1136/ard-2022-223697.
Article CAS PubMed Google Scholar
Sumneang N, Tanajak P, Oo TT. Toll-like receptor 4 inflammatory perspective on doxorubicin-induced cardiotoxicity. Molecules. 2023;28. https://doi.org/10.3390/molecules28114294.
Baniahmad B, Safaeian L, Vaseghi G, Rabbani M, Mohammadi B. Cardioprotective effect of vanillic acid against doxorubicin-induced cardiotoxicity in rat. Res Pharm Sci. 2020;15:87–96. https://doi.org/10.4103/1735-5362.278718.
Article PubMed PubMed Central Google Scholar
Xu L, Wang C, Zou Z, Wu Z. Ozone attenuated H9c2 cell injury induced by doxorubicin. J Cardiovasc Pharmacol. 2021;78:e86–93. https://doi.org/10.1097/FJC.0000000000001043.
Comments (0)