Biochanin A Mitigates Pressure Overload-Induced Cardiac Hypertrophy Through Modulation of the NF-κB/Cbl-b/NLRP3 Signaling Axis

Kida K. Left ventricular hypertrophy was not built in a day. Hypertens Res. 2023;46(2):341–2. https://doi.org/10.1038/s41440-022-01119-4

Article  PubMed  Google Scholar 

Volpe M, Gallo G. Hypertension, coronary artery disease and myocardial ischemic syndromes. Vascul Pharmacol. 2023;153: 107230. https://doi.org/10.1016/j.vph.2023.107230

Article  CAS  PubMed  Google Scholar 

Zhang X, Cai J, Li X, Chen X, Zhang Q. Left ventricular hypertrophy with cardiomyocyte atrophy and extensive interstitial fibrosis: a mitochondrial cardiomyopathy. Eur Heart J. 2023;44(7):627. https://doi.org/10.1093/eurheartj/ehac672

Article  PubMed  Google Scholar 

Liu Y, Lu H, Zhang C, Hu J, Xu D. Recent advances in understanding the roles of T cells in pressure overload-induced cardiac hypertrophy and remodeling. J Mol Cell Cardiol. 2019;129:293–302. https://doi.org/10.1016/j.yjmcc.2019.01.005

Article  CAS  PubMed  Google Scholar 

Tang X, Wang P, Zhang R et al. KLF2 regulates neutrophil activation and thrombosis in cardiac hypertrophy and heart failure progression. J Clin Invest. 2022;132(3). https://doi.org/10.1172/JCI147191.

Giamouzis G, Dimos A, Xanthopoulos A, Skoularigis J, Triposkiadis F. Left ventricular hypertrophy and sudden cardiac death. Heart Fail Rev. 2022;27(2):711–24. https://doi.org/10.1007/s10741-021-10134-5

Article  PubMed  Google Scholar 

Fang Y, Tian S, Pan Y, et al. Pyroptosis: a new frontier in cancer. Biomed Pharmacother. 2020;121:109595. https://doi.org/10.1016/j.biopha.2019.109595

Article  CAS  PubMed  Google Scholar 

Toldo S, Abbate A. The role of the NLRP3 inflammasome and pyroptosis in cardiovascular diseases. Nat Rev Cardiol. 2024;21(4):219–37. https://doi.org/10.1038/s41569-023-00946-3

Article  CAS  PubMed  Google Scholar 

Yao J, Sterling K, Wang Z, Zhang Y, Song W. The role of inflammasomes in human diseases and their potential as therapeutic targets. Signal Transduct Target Ther. 2024;9(1):10. https://doi.org/10.1038/s41392-023-01687-y

Article  PubMed  PubMed Central  Google Scholar 

Wang S, Yuan YH, Chen NH, Wang HB. The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in Parkinson’s disease. Int Immunopharmacol. 2019;67:458–64. https://doi.org/10.1016/j.intimp.2018.12.019

Article  CAS  PubMed  Google Scholar 

Chen X, Liu G, Yuan Y, et al. NEK7 interacts with NLRP3 to modulate the pyroptosis in inflammatory bowel disease via NF-kappaB signaling. Cell Death Dis. 2019;10(12):906. https://doi.org/10.1038/s41419-019-2157-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bai B, Yang Y, Wang Q, et al. NLRP3 inflammasome in endothelial dysfunction. Cell Death Dis. 2020;11(9):776. https://doi.org/10.1038/s41419-020-02985-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zuo Y, Chen L, Gu H, et al. GSDMD-mediated pyroptosis: a critical mechanism of diabetic nephropathy. Expert Rev Mol Med. 2021;23: e23. https://doi.org/10.1017/erm.2021.27

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yanpiset P, Maneechote C, Sriwichaiin S, et al. Gasdermin D-mediated pyroptosis in myocardial ischemia and reperfusion injury: cumulative evidence for future cardioprotective strategies. Acta Pharm Sin B. 2023;13(1):29–53. https://doi.org/10.1016/j.apsb.2022.08.007

Article  CAS  PubMed  Google Scholar 

De Miguel C, Pelegrin P, Baroja-Mazo A, Cuevas S. Emerging role of the inflammasome and pyroptosis in hypertension. Int J Mol Sci. 2021;22(3). https://doi.org/10.3390/ijms22031064

Wu J, Dong E, Zhang Y, Xiao H. The role of the inflammasome in heart failure. Front Physiol. 2021;12:709703. https://doi.org/10.3389/fphys.2021.709703.

Article  PubMed  PubMed Central  Google Scholar 

Bai Y, Sun X, Chu Q et al. Caspase-1 regulate AngII-induced cardiomyocyte hypertrophy via upregulation of IL-1beta. Biosci Rep. 2018;38(2). https://doi.org/10.1042/BSR20171438

Zhu YF, Wang R, Chen W, et al. miR-133a-3p attenuates cardiomyocyte hypertrophy through inhibiting pyroptosis activation by targeting IKKepsilon. Acta Histochem. 2021;123(1):151653. https://doi.org/10.1016/j.acthis.2020.151653

Article  CAS  PubMed  Google Scholar 

Nestel PJ, Pomeroy S, Kay S, et al. Isoflavones from red clover improve systemic arterial compliance but not plasma lipids in menopausal women. J Clin Endocrinol Metab. 1999;84(3):895–8. https://doi.org/10.1210/jcem.84.3.5561

Article  CAS  PubMed  Google Scholar 

Yan J, Qiu P, Zhang X, et al. Biochanin A from Chinese medicine: an isoflavone with diverse pharmacological properties. Am J Chin Med. 2021;49(7):1623–43. https://doi.org/10.1142/S0192415X21500750

Article  CAS  PubMed  Google Scholar 

Sarfraz A, Javeed M, Shah MA, et al. Biochanin A: a novel bioactive multifunctional compound from nature. Sci Total Environ. 2020;722: 137907. https://doi.org/10.1016/j.scitotenv.2020.137907

Article  CAS  PubMed  Google Scholar 

Yu XH, Chen JJ, Deng WY, et al. Biochanin A mitigates atherosclerosis by inhibiting lipid accumulation and inflammatory response. Oxid Med Cell Longev. 2020;2020:8965047. https://doi.org/10.1155/2020/8965047

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bai Y, Li Z, Liu W, et al. Biochanin A attenuates myocardial ischemia/reperfusion injury through the TLR4/NF-kappaB/NLRP3 signaling pathway. Acta Cir Bras. 2019;34(11):e201901104. https://doi.org/10.1590/s0102-865020190110000004

Article  PubMed  PubMed Central  Google Scholar 

Govindasami S, Uddandrao VVS, Raveendran N, Sasikumar V. Therapeutic potential of biochanin-A against isoproterenol-induced myocardial infarction in rats. Cardiovasc Hematol Agents Med Chem. 2020;18(1):31–6. https://doi.org/10.2174/1871525718666200206114304

Article  CAS  PubMed  Google Scholar 

Feng Z, Zhang N, Bai J, et al. Biochanin A inhibits cardiac hypertrophy and fibrosis in vivo and in vitro. Biomed Pharmacother. 2024;170:116002. https://doi.org/10.1016/j.biopha.2023.116002

Article  CAS  PubMed  Google Scholar 

Li G, Shao Y, Guo HC, et al. MicroRNA-27b-3p down-regulates FGF1 and aggravates pathological cardiac remodelling. Cardiovasc Res. 2022;118(9):2139–51. https://doi.org/10.1093/cvr/cvab248

Article  CAS  PubMed  Google Scholar 

Tang J, Tu S, Lin G et al. Sequential ubiquitination of NLRP3 by RNF125 and Cbl-b limits inflammasome activation and endotoxemia. J Exp Med. 2020;217(4). https://doi.org/10.1084/jem.20182091

El-Sayed RM, Fawzy MN, Zaki HF, Abd El-Haleim EA. Neuroprotection impact of biochanin A against pentylenetetrazol-kindled mice: targeting NLRP3 inflammasome/TXNIP pathway and autophagy modulation. Int Immunopharmacol. 2023;115: 109711. https://doi.org/10.1016/j.intimp.2023.109711

Article  CAS  PubMed  Google Scholar 

Anuranjana PV, Beegum F, K PD et al. Mechanisms behind the pharmacological application of biochanin-A: a review. F1000Res. 2023;12:107. https://doi.org/10.12688/f1000research.126059.3.

Oza MJ, Kulkarni YA. Biochanin A attenuates cardiomyopathy in type 2 diabetic rats by increasing SIRT1 expression and reducing oxidative stress. Chem Biodivers. 2022;19(3):e202100591. https://doi.org/10.1002/cbdv.202100591

Article  CAS  PubMed  Google Scholar 

Luan F, Rao Z, Peng L, et al. Cinnamic acid preserves against myocardial ischemia/reperfusion injury via suppression of NLRP3/Caspase-1/GSDMD signaling pathway. Phytomedicine. 2022;100: 154047. https://doi.org/10.1016/j.phymed.2022.154047

Article  CAS  PubMed  Google Scholar 

Chen X, Tian PC, Wang K, Wang M, Wang K. Pyroptosis: role and mechanisms in cardiovascular disease. Front Cardiovasc Med. 2022;9:897815. https://doi.org/10.3389/fcvm.2022.897815.

Article  CAS 

Comments (0)

No login
gif