HDAC6 inhibition through WT161 synergizes with temozolomide, induces apoptosis, reduces cell motility, and decreases β-catenin levels in glioblastoma cells

Oster C et al (2023) Are we providing best-available care to newly diagnosed glioblastoma patients? Systematic review of phase III trials in newly diagnosed glioblastoma 2005–2022. Neuro-Oncol Adv 5:vdad105. no 110.1093/noajnl/vdad105

Article  Google Scholar 

Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma, N. Engl. J. Med., vol. 352, no 10, pp. 987–996. https://doi.org/10.1056/NEJMoa043330

Grozinger CM, Hassig CA, Schreiber eSL (1999) Three proteins define a class of human histone deacetylases related to yeast Hda1p, Proc. Natl. Acad. Sci. U. S. A., vol. 96, no 9, pp. 4868–4873. https://doi.org/10.1073/pnas.96.9.4868

Aldana-Masangkay GI, Sakamoto eKM (2011) The Role of HDAC6 in Cancer, J. Biomed. Biotechnol., vol. p. 875824, 2011. https://doi.org/10.1155/2011/875824

Williams KA et al (2013) Extracellular signal-regulated kinase (ERK) phosphorylates histone deacetylase 6 (HDAC6) at serine 1035 to stimulate cell migration. J Biol Chem 288:33156–33170. no 4610.1074/jbc.M113.472506

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wickström SA, Masoumi KC, Khochbin S, Fässler R, Massoumi eR (2010) CYLD negatively regulates cell-cycle progression by inactivating HDAC6 and increasing the levels of acetylated tubulin. EMBO J 29:131–144. no 110.1038/emboj.2009.317

Article  CAS  PubMed  Google Scholar 

Zhang X et al (2007) HDAC6 modulates cell motility by altering the acetylation level of cortactin, Mol. Cell, vol. 27, no 2, pp. 197–213. https://doi.org/10.1016/j.molcel.2007.05.033

Subramanian C, Jarzembowski JA, Opipari AW, Castle VP, Kwok eRPS (2011) HDAC6 deacetylates Ku70 and regulates Ku70-Bax binding in neuroblastoma. Neoplasia N Y N 13:726–734. no 810.1593/neo.11558

Article  CAS  Google Scholar 

Boyault C et al (2007) HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates. Genes Dev 21:2172–2181. no 1710.1101/gad.436407

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Z et al (2016) HDAC6 promotes cell proliferation and confers resistance to temozolomide in glioblastoma. Cancer Lett 379:134–142. no 110.1016/j.canlet.2016.06.001

Article  CAS  PubMed  Google Scholar 

Kim GW et al (2019) Temozolomide-resistant Glioblastoma Depends on HDAC6 Activity Through Regulation of DNA Mismatch Repair, Anticancer Res., vol. 39, no 12, pp. 6731–6741. https://doi.org/10.21873/anticanres.13888

Yang W, Liu Y, Gao R, Yu H, Sun eT (2018) HDAC6 inhibition induces glioma stem cells differentiation and enhances cellular radiation sensitivity through the SHH/Gli1 signaling pathway. Cancer Lett 415:164–176. https://doi.org/10.1016/j.canlet.2017.12.005

Article  CAS  PubMed  Google Scholar 

Li S, Liu X, Chen X, Zhang L, Wang eX (2015) Histone deacetylase 6 promotes growth of glioblastoma through inhibition of SMAD2 signaling, Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med., vol. 36, no 12, pp. 9661–9665. https://doi.org/10.1007/s13277-015-3747-x

Liu J-R, Yu C-W, Hung P-Y, Hsin L-W, Chern eJ-W (2019) High-selective HDAC6 inhibitor promotes HDAC6 degradation following autophagy modulation and enhanced antitumor immunity in glioblastoma. Biochem Pharmacol 163:458–471. https://doi.org/10.1016/j.bcp.2019.03.023

Article  CAS  PubMed  Google Scholar 

Pulya S, Amin SA, Adhikari N, Biswas S, Jha T, Ghosh eB (2021) HDAC6 as privileged target in drug discovery: a perspective. Pharmacol Res 163:105274. https://doi.org/10.1016/j.phrs.2020.105274

Article  CAS  PubMed  Google Scholar 

García-Guerrero E et al (2021) Upregulation of CD38 expression on multiple myeloma cells by novel HDAC6 inhibitors is a class effect and augments the efficacy of daratumumab, Leukemia, vol. 35, no 1, pp. 201–214. https://doi.org/10.1038/s41375-020-0840-y

Hideshima T et al (2016) Discovery of selective small-molecule HDAC6 inhibitor for overcoming proteasome inhibitor resistance in multiple myeloma, Proc. Natl. Acad. Sci. U. S. A., vol. 113, no 46, pp. 13162–13167. https://doi.org/10.1073/pnas.1608067113

Sun J et al (2019) HDAC6 inhibitor WT161 induces apoptosis in retinoblastoma cells and synergistically interacts with cisplatin. Transl Cancer Res 8:2759–2768. no 810.21037/tcr.2019.10.30

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hideshima T et al (2017) HDAC6 inhibitor WT161 downregulates growth factor receptors in breast cancer, Oncotarget, vol. 8, no 46, pp. 80109–80123. https://doi.org/10.18632/oncotarget.19019

Sun J et al (2021) HDAC6 inhibitor WT161 performs anti-tumor effect on osteosarcoma and synergistically interacts with 5-FU, Biosci. Rep., vol. 41, no 4, p. BSR20203905. https://doi.org/10.1042/BSR20203905

Yu B et al The synergistic anticancer effect of the bromodomain inhibitor OTX015 and histone deacetylase 6 inhibitor WT-161 in osteosarcoma. Cancer Cell Int, 22, no 1, p. 64, 022, https://doi.org/10.1186/s12935-022-02443-y

Friedrich J, Seidel C, Ebner R, Kunz-Schughart eLA (2009) Spheroid-based drug screen: considerations and practical approach. Nat Protoc 4:309–324. no 310.1038/nprot.2008.226

Article  CAS  PubMed  Google Scholar 

Lamartine-Hanemann SdaS et al (2020) A tetraprenylated benzophenone 7-epiclusianone induces cell cycle arrest at G1/S transition by modulating critical regulators of cell cycle in breast cancer cell lines. Toxicol Vitro 68:104927. https://doi.org/10.1016/j.tiv.2020.104927

Article  CAS  Google Scholar 

Franken NAP, Rodermond HM, Stap J, Haveman J, van Bree eC (2006) Clonogenic assay of cells in vitro, Nat. Protoc., vol. 1, no 5, pp. 2315–2319. https://doi.org/10.1038/nprot.2006.339

Chou TC, Talalay eP (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55. https://doi.org/10.1016/0065-2571(84)90007-4

Article  CAS  PubMed  Google Scholar 

Chou TC (2010) Drug Combination Studies and Their Synergy Quantification Using the Chou-Talalay Method, Cancer Res., vol. 70, no 2, pp. 440–446. https://doi.org/10.1158/0008-5472.CAN-09-1947

Martinotti S, Ranzato E (2020) Scratch Wound Healing Assay. Methods Mol Biol Clifton NJ 2109:225–229. https://doi.org/10.1007/7651_2019_259

Article  CAS  Google Scholar 

Schneider CA, Rasband WS, Eliceiri eKW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. no 710.1038/nmeth.2089

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vinci M, Box C, Zimmermann M, Eccles eSA (2013) Tumor spheroid-based migration assays for evaluation of therapeutic agents. Methods Mol Biol Clifton NJ 986:253–266. https://doi.org/10.1007/978-1-62703-311-4_16

Article  CAS  Google Scholar 

Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan eJS (2020) CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013–2017, Neuro-Oncol., vol. 22, no Suppl 1, p. iv1–iv96. https://doi.org/10.1093/neuonc/noaa200

Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw eM (2020) Management of glioblastoma: State of the art and future directions, CA. Cancer J. Clin., vol. 70, no 4, pp. 299–312. https://doi.org/10.3322/caac.21613

Lee YT, Tan YJ, Oon eCE (2018) Molecular targeted therapy: treating cancer with specificity. Eur J Pharmacol 834:188–196. https://doi.org/10.1016/j.ejphar.2018.07.034

Article  CAS  PubMed  Google Scholar 

Zheng Y-C et al (2023) Curriculum vitae of HDAC6 in solid tumors. Int J Biol Macromol 230:123219. https://doi.org/10.1016/j.ijbiomac.2023.123219

Article  CAS  PubMed  Google Scholar 

Stetson LC et al (2020) Proteins inform survival-based differences in patients with glioblastoma. Neuro-Oncol Adv 2:vdaa039. no 110.1093/noajnl/vdaa039

Article  CAS  Google Scholar 

Yanovich-Arad G et al (2021) Proteogenomics of glioblastoma associates molecular patterns with survival, Cell Rep., vol. 34, no 9, p. 108787. https://doi.org/10.1016/j.celrep.2021.108787

Lucio-Eterovic AK et al (2008) Differential expression of 12 histone deacetylase (HDAC) genes in astrocytomas and normal brain tissue: class II and IV are hypoexpressed in glioblastomas. BMC Cancer 8:243. no 110.1186/1471-2407-8-243

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marampon F et al (2017) HDAC4 and HDAC6 sustain DNA double strand break repair and stem-like phenotype by promoting radioresistance in glioblastoma cells. Cancer Lett 397:1–11. https://doi.org/10.1016/j.canlet.2017.03.028

Article  CAS  PubMed  Google Scholar 

Sferra R et al (2017) The possible prognostic role of histone deacetylase and transforming growth factor β/Smad signaling in high grade gliomas treated by radio-chemotherapy: a preliminary immunohistochemical study. Eur J Histochem EJH 61:2732. no 210.4081/ejh.2017.2732

Article  CAS  PubMed  Google Scholar 

Galanis E et al (2018) Phase I/II trial of vorinostat combined with temozolomide and radiation therapy for newly diagnosed glioblastoma: results of Alliance N0874/ABTC 02, Neuro-Oncol., vol. 20, no 4, pp. 546–556. https://doi.org/10.1093/neuonc/nox161

Auzmendi-Iriarte J et al (2020) Characterization of a new small-molecule inhibitor of HDAC6 in glioblastoma. Cell Death Dis 11:417. no 610.1038/s41419-020-2586-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Z-Y et al (2017) A novel HDAC6 inhibitor Tubastatin A: Controls HDAC6-p97/VCP-mediated ubiquitination-autophagy turnover and reverses Temozolomide-induced ER stress-tolerance in GBM cells. Cancer Lett 391:89–99. https://doi.org/10.1016/j.canlet.2017.01.025

Article  CAS  PubMed  Google Scholar 

Dong J et al (2018) A novel HDAC6 inhibitor exerts an anti-cancer effect by triggering cell cycle arrest and apoptosis in gastric cancer. Eur J Pharmacol 828:67–79. https://doi.org/10.1016/j.ejphar.2018.03.026

Article  CAS  PubMed 

Comments (0)

No login
gif