Oster C et al (2023) Are we providing best-available care to newly diagnosed glioblastoma patients? Systematic review of phase III trials in newly diagnosed glioblastoma 2005–2022. Neuro-Oncol Adv 5:vdad105. no 110.1093/noajnl/vdad105
Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma, N. Engl. J. Med., vol. 352, no 10, pp. 987–996. https://doi.org/10.1056/NEJMoa043330
Grozinger CM, Hassig CA, Schreiber eSL (1999) Three proteins define a class of human histone deacetylases related to yeast Hda1p, Proc. Natl. Acad. Sci. U. S. A., vol. 96, no 9, pp. 4868–4873. https://doi.org/10.1073/pnas.96.9.4868
Aldana-Masangkay GI, Sakamoto eKM (2011) The Role of HDAC6 in Cancer, J. Biomed. Biotechnol., vol. p. 875824, 2011. https://doi.org/10.1155/2011/875824
Williams KA et al (2013) Extracellular signal-regulated kinase (ERK) phosphorylates histone deacetylase 6 (HDAC6) at serine 1035 to stimulate cell migration. J Biol Chem 288:33156–33170. no 4610.1074/jbc.M113.472506
Article CAS PubMed PubMed Central Google Scholar
Wickström SA, Masoumi KC, Khochbin S, Fässler R, Massoumi eR (2010) CYLD negatively regulates cell-cycle progression by inactivating HDAC6 and increasing the levels of acetylated tubulin. EMBO J 29:131–144. no 110.1038/emboj.2009.317
Article CAS PubMed Google Scholar
Zhang X et al (2007) HDAC6 modulates cell motility by altering the acetylation level of cortactin, Mol. Cell, vol. 27, no 2, pp. 197–213. https://doi.org/10.1016/j.molcel.2007.05.033
Subramanian C, Jarzembowski JA, Opipari AW, Castle VP, Kwok eRPS (2011) HDAC6 deacetylates Ku70 and regulates Ku70-Bax binding in neuroblastoma. Neoplasia N Y N 13:726–734. no 810.1593/neo.11558
Boyault C et al (2007) HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates. Genes Dev 21:2172–2181. no 1710.1101/gad.436407
Article CAS PubMed PubMed Central Google Scholar
Wang Z et al (2016) HDAC6 promotes cell proliferation and confers resistance to temozolomide in glioblastoma. Cancer Lett 379:134–142. no 110.1016/j.canlet.2016.06.001
Article CAS PubMed Google Scholar
Kim GW et al (2019) Temozolomide-resistant Glioblastoma Depends on HDAC6 Activity Through Regulation of DNA Mismatch Repair, Anticancer Res., vol. 39, no 12, pp. 6731–6741. https://doi.org/10.21873/anticanres.13888
Yang W, Liu Y, Gao R, Yu H, Sun eT (2018) HDAC6 inhibition induces glioma stem cells differentiation and enhances cellular radiation sensitivity through the SHH/Gli1 signaling pathway. Cancer Lett 415:164–176. https://doi.org/10.1016/j.canlet.2017.12.005
Article CAS PubMed Google Scholar
Li S, Liu X, Chen X, Zhang L, Wang eX (2015) Histone deacetylase 6 promotes growth of glioblastoma through inhibition of SMAD2 signaling, Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med., vol. 36, no 12, pp. 9661–9665. https://doi.org/10.1007/s13277-015-3747-x
Liu J-R, Yu C-W, Hung P-Y, Hsin L-W, Chern eJ-W (2019) High-selective HDAC6 inhibitor promotes HDAC6 degradation following autophagy modulation and enhanced antitumor immunity in glioblastoma. Biochem Pharmacol 163:458–471. https://doi.org/10.1016/j.bcp.2019.03.023
Article CAS PubMed Google Scholar
Pulya S, Amin SA, Adhikari N, Biswas S, Jha T, Ghosh eB (2021) HDAC6 as privileged target in drug discovery: a perspective. Pharmacol Res 163:105274. https://doi.org/10.1016/j.phrs.2020.105274
Article CAS PubMed Google Scholar
García-Guerrero E et al (2021) Upregulation of CD38 expression on multiple myeloma cells by novel HDAC6 inhibitors is a class effect and augments the efficacy of daratumumab, Leukemia, vol. 35, no 1, pp. 201–214. https://doi.org/10.1038/s41375-020-0840-y
Hideshima T et al (2016) Discovery of selective small-molecule HDAC6 inhibitor for overcoming proteasome inhibitor resistance in multiple myeloma, Proc. Natl. Acad. Sci. U. S. A., vol. 113, no 46, pp. 13162–13167. https://doi.org/10.1073/pnas.1608067113
Sun J et al (2019) HDAC6 inhibitor WT161 induces apoptosis in retinoblastoma cells and synergistically interacts with cisplatin. Transl Cancer Res 8:2759–2768. no 810.21037/tcr.2019.10.30
Article CAS PubMed PubMed Central Google Scholar
Hideshima T et al (2017) HDAC6 inhibitor WT161 downregulates growth factor receptors in breast cancer, Oncotarget, vol. 8, no 46, pp. 80109–80123. https://doi.org/10.18632/oncotarget.19019
Sun J et al (2021) HDAC6 inhibitor WT161 performs anti-tumor effect on osteosarcoma and synergistically interacts with 5-FU, Biosci. Rep., vol. 41, no 4, p. BSR20203905. https://doi.org/10.1042/BSR20203905
Yu B et al The synergistic anticancer effect of the bromodomain inhibitor OTX015 and histone deacetylase 6 inhibitor WT-161 in osteosarcoma. Cancer Cell Int, 22, no 1, p. 64, 022, https://doi.org/10.1186/s12935-022-02443-y
Friedrich J, Seidel C, Ebner R, Kunz-Schughart eLA (2009) Spheroid-based drug screen: considerations and practical approach. Nat Protoc 4:309–324. no 310.1038/nprot.2008.226
Article CAS PubMed Google Scholar
Lamartine-Hanemann SdaS et al (2020) A tetraprenylated benzophenone 7-epiclusianone induces cell cycle arrest at G1/S transition by modulating critical regulators of cell cycle in breast cancer cell lines. Toxicol Vitro 68:104927. https://doi.org/10.1016/j.tiv.2020.104927
Franken NAP, Rodermond HM, Stap J, Haveman J, van Bree eC (2006) Clonogenic assay of cells in vitro, Nat. Protoc., vol. 1, no 5, pp. 2315–2319. https://doi.org/10.1038/nprot.2006.339
Chou TC, Talalay eP (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55. https://doi.org/10.1016/0065-2571(84)90007-4
Article CAS PubMed Google Scholar
Chou TC (2010) Drug Combination Studies and Their Synergy Quantification Using the Chou-Talalay Method, Cancer Res., vol. 70, no 2, pp. 440–446. https://doi.org/10.1158/0008-5472.CAN-09-1947
Martinotti S, Ranzato E (2020) Scratch Wound Healing Assay. Methods Mol Biol Clifton NJ 2109:225–229. https://doi.org/10.1007/7651_2019_259
Schneider CA, Rasband WS, Eliceiri eKW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. no 710.1038/nmeth.2089
Article CAS PubMed PubMed Central Google Scholar
Vinci M, Box C, Zimmermann M, Eccles eSA (2013) Tumor spheroid-based migration assays for evaluation of therapeutic agents. Methods Mol Biol Clifton NJ 986:253–266. https://doi.org/10.1007/978-1-62703-311-4_16
Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan eJS (2020) CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013–2017, Neuro-Oncol., vol. 22, no Suppl 1, p. iv1–iv96. https://doi.org/10.1093/neuonc/noaa200
Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw eM (2020) Management of glioblastoma: State of the art and future directions, CA. Cancer J. Clin., vol. 70, no 4, pp. 299–312. https://doi.org/10.3322/caac.21613
Lee YT, Tan YJ, Oon eCE (2018) Molecular targeted therapy: treating cancer with specificity. Eur J Pharmacol 834:188–196. https://doi.org/10.1016/j.ejphar.2018.07.034
Article CAS PubMed Google Scholar
Zheng Y-C et al (2023) Curriculum vitae of HDAC6 in solid tumors. Int J Biol Macromol 230:123219. https://doi.org/10.1016/j.ijbiomac.2023.123219
Article CAS PubMed Google Scholar
Stetson LC et al (2020) Proteins inform survival-based differences in patients with glioblastoma. Neuro-Oncol Adv 2:vdaa039. no 110.1093/noajnl/vdaa039
Yanovich-Arad G et al (2021) Proteogenomics of glioblastoma associates molecular patterns with survival, Cell Rep., vol. 34, no 9, p. 108787. https://doi.org/10.1016/j.celrep.2021.108787
Lucio-Eterovic AK et al (2008) Differential expression of 12 histone deacetylase (HDAC) genes in astrocytomas and normal brain tissue: class II and IV are hypoexpressed in glioblastomas. BMC Cancer 8:243. no 110.1186/1471-2407-8-243
Article CAS PubMed PubMed Central Google Scholar
Marampon F et al (2017) HDAC4 and HDAC6 sustain DNA double strand break repair and stem-like phenotype by promoting radioresistance in glioblastoma cells. Cancer Lett 397:1–11. https://doi.org/10.1016/j.canlet.2017.03.028
Article CAS PubMed Google Scholar
Sferra R et al (2017) The possible prognostic role of histone deacetylase and transforming growth factor β/Smad signaling in high grade gliomas treated by radio-chemotherapy: a preliminary immunohistochemical study. Eur J Histochem EJH 61:2732. no 210.4081/ejh.2017.2732
Article CAS PubMed Google Scholar
Galanis E et al (2018) Phase I/II trial of vorinostat combined with temozolomide and radiation therapy for newly diagnosed glioblastoma: results of Alliance N0874/ABTC 02, Neuro-Oncol., vol. 20, no 4, pp. 546–556. https://doi.org/10.1093/neuonc/nox161
Auzmendi-Iriarte J et al (2020) Characterization of a new small-molecule inhibitor of HDAC6 in glioblastoma. Cell Death Dis 11:417. no 610.1038/s41419-020-2586-x
Article CAS PubMed PubMed Central Google Scholar
Li Z-Y et al (2017) A novel HDAC6 inhibitor Tubastatin A: Controls HDAC6-p97/VCP-mediated ubiquitination-autophagy turnover and reverses Temozolomide-induced ER stress-tolerance in GBM cells. Cancer Lett 391:89–99. https://doi.org/10.1016/j.canlet.2017.01.025
Article CAS PubMed Google Scholar
Dong J et al (2018) A novel HDAC6 inhibitor exerts an anti-cancer effect by triggering cell cycle arrest and apoptosis in gastric cancer. Eur J Pharmacol 828:67–79. https://doi.org/10.1016/j.ejphar.2018.03.026
Comments (0)