Microvascular structure variability explains variance in fMRI functional connectivity

Akerboom J, Chen TW, Wardill TJ, Tian L, Marvin JS, Mutlu S, Calderón NC, Esposti F, Borghuis BG, Sun XR, Gordus A, Orger MB, Portugues R, Engert F, Macklin JJ, Filosa A, Aggarwal A, Kerr RA, Takagi R, Kracun S, Shigetomi E, Khakh BS, Baier H, Lagnado L, Wang SSH, Bargmann CI, Kimmel BE, Jayaraman V, Svoboda K, Kim DS, Schreiter ER, Looger LL (2012) Optimization of a GCaMP calcium indicator for neural activity imaging. J Neurosci 32(40):13819–13840. https://doi.org/10.1523/JNEUROSCI.2601-12.2012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alarcon-Martinez L, Villafranca-Baughman D, Quintero H, Kacerovsky JB, Dotigny F, Murai KK, Prat A, Drapeau P, Di Polo A (2020) Interpericyte tunnelling nanotubes regulate neurovascular coupling. Nature 585(7823):91–95. https://doi.org/10.1038/s41586-020-2589-x

Article  CAS  PubMed  Google Scholar 

Archila-Meléndez ME, Sorg C, Preibisch C (2020) Modeling the impact of neurovascular coupling impairments on BOLD-based functional connectivity at rest. NeuroImage 218:116871. https://doi.org/10.1016/j.neuroimage.2020.116871

Article  CAS  PubMed  Google Scholar 

Attwell D, Iadecola C (2002) The neural basis of functional brain imaging signals. Trends Neurosci 25(12):621–625. https://doi.org/10.1016/S0166-2236(02)02264-6

Article  CAS  PubMed  Google Scholar 

Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage 54(3):2033–2044. https://doi.org/10.1016/j.neuroimage.2010.09.025

Article  PubMed  Google Scholar 

Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25(2):390–397. https://doi.org/10.1002/mrm.1910250220

Article  CAS  PubMed  Google Scholar 

Barone FC, Knudsen DJ, Nelson AH, Feuerstein GZ, Willette RN (1993) Mouse strain differences in susceptibility to cerebral ischemia are related to cerebral vascular anatomy. J Cereb Blood Flow Metab 13(4):683–692. https://doi.org/10.1038/jcbfm.1993.87

Article  CAS  PubMed  Google Scholar 

Beckmann N (2000) High resolution magnetic resonance angiography non-invasively reveals mouse strain differences in the cerebrovascular anatomy in vivo. Magn Reson Med 44(2):252–258. https://doi.org/10.1002/1522-2594(200008)44:2<252::AID-MRM12>3.0.CO;2-G

Article  CAS  PubMed  Google Scholar 

Belliveau JW, Kennedy DN, McKinstry RC, Buchbinder BR, Weisskoff RM, Cohen MS, Vevea JM, Brady TJ, Rosen BR (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science (New York, NY) 254(5032):716–719. https://doi.org/10.1126/science.1948051

Article  CAS  Google Scholar 

Blinder P, Tsai PS, Kaufhold JP, Knutsen PM, Suhl H, Kleinfeld D (2013) The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow. Nat Neurosci 16(7):889–897. https://doi.org/10.1038/nn.3426

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burnside WM, Flecknell PA, Cameron AI, Thomas AA (2013) A comparison of medetomidine and its active enantiomer dexmedetomidine when administered with ketamine in mice. BMC Vet Res 9(1):48. https://doi.org/10.1186/1746-6148-9-48

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burt JB, Helmer M, Shinn M, Anticevic A, Murray JD (2020) Generative modeling of brain maps with spatial autocorrelation. NeuroImage 220:117038. https://doi.org/10.1016/j.neuroimage.2020.117038

Article  PubMed  Google Scholar 

Buxton RB (2013) The physics of functional magnetic resonance imaging (fMRI). Rep Prog Phys 76(9):096601. https://doi.org/10.1088/0034-4885/76/9/096601

Article  PubMed  PubMed Central  Google Scholar 

Chen Z, Caprihan A, Calhoun V (2010) Effect of surrounding vasculature on intravoxel BOLD signal. Med Phys 37(4):1778–1787. https://doi.org/10.1118/1.3366251

Article  PubMed  PubMed Central  Google Scholar 

Coletta L, Pagani M, Whitesell JD, Harris JA, Bernhardt B, Gozzi A (2020) Network structure of the mouse brain connectome with voxel resolution. Sci Adv 6(51):eabb7187. https://doi.org/10.1126/sciadv.abb7187

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res Int J 29(3):162–173. https://doi.org/10.1006/cbmr.1996.0014

Article  CAS  Google Scholar 

Crofts JJ, Higham DJ (2009) A weighted communicability measure applied to complex brain networks. J R Soc Interface 6(33):411–414. https://doi.org/10.1098/rsif.2008.0484

Article  PubMed  PubMed Central  Google Scholar 

Damoiseaux JS, Greicius MD (2009) Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct Funct 213(6):525–533. https://doi.org/10.1007/s00429-009-0208-6

Article  PubMed  Google Scholar 

Dana H, Sun Y, Mohar B, Hulse BK, Kerlin AM, Hasseman JP, Tsegaye G, Tsang A, Wong A, Patel R, Macklin JJ, Chen Y, Konnerth A, Jayaraman V, Looger LL, Schreiter ER, Svoboda K, Kim DS (2019) High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat Methods 16(7):649–657. https://doi.org/10.1038/s41592-019-0435-6

Article  CAS  PubMed  Google Scholar 

Desrosiers-Grégoire G, Devenyi GA, Grandjean J, Chakravarty MM (2024) A standardized image processing and data quality platform for rodent fMRI. Nat Commun 15(1):6708. https://doi.org/10.1038/s41467-024-50826-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dorr AE, Lerch JP, Spring S, Kabani N, Henkelman RM (2008) High resolution three-dimensional brain atlas using an average magnetic resonance image of 40 adult C57Bl/6J mice. NeuroImage 42(1):60–69. https://doi.org/10.1016/j.neuroimage.2008.03.037

Article  CAS  PubMed  Google Scholar 

Drew PJ (2019) Vascular and neural basis of the BOLD signal. Curr Opin Neurobiol 58:61–69. https://doi.org/10.1016/j.conb.2019.06.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Echagarruga CT, Gheres KW, Norwood JN, Drew PJ (2020) nNOS-expressing interneurons control basal and behaviorally evoked arterial dilation in somatosensory cortex of mice. eLife 9:e60533. https://doi.org/10.7554/eLife.60533

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fulcher BD, Murray JD, Zerbi V, Wang XJ (2019) Multimodal gradients across mouse cortex. Proc Natl Acad Sci USA 116(10):4689–4695. https://doi.org/10.1073/pnas.1814144116

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gagnon L, Sakadžić S, Lesage F, Musacchia JJ, Lefebvre J, Fang Q, Yücel MA, Evans KC, Mandeville ET, Cohen-Adad J, Polimeni JR, Yaseen MA, Lo EH, Greve DN, Buxton RB, Dale AM, Devor A, Boas DA (2015) Quantifying the microvascular origin of BOLD-fMRI from first principles with two-photon microscopy and an oxygen-sensitive nanoprobe. J Neurosci 35(8):3663–3675. https://doi.org/10.1523/JNEUROSCI.3555-14.2015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goñi J, van den Heuvel MP, Avena-Koenigsberger A, Velez de Mendizabal N, Betzel RF, Griffa A, Hagmann P, Corominas-Murtra B, Thiran JP, Sporns O (2014) Resting-brain functional connectivity predicted by analytic measures of network communication. Proc Natl Acad Sci 111(2):833–838. https://doi.org/10.1073/pnas.1315529111

Article  CAS  PubMed  Google Scholar 

Grandjean J, Zerbi V, Balsters JH, Wenderoth N, Rudin M (2017) Structural basis of large-scale functional connectivity in the mouse. J Neurosci 37(34):8092–8101. https://doi.org/10.1523/JNEUROSCI.0438-17.2017

Comments (0)

No login
gif