Kiehn O, Dougherty K, Locomotion: Circuits and physiology. In: Pfaff DW, editor. Neuroscience in the 21st Century. Berlin: Springer; 2013. pp. 1209–36. https://doi.org/10.1007/978-1-4614-1997-6_42.
Zill S. Invertebrate neurobiology: brain control of insect walking. Curr Biol. 2010;20:R438-40. https://doi.org/10.1016/j.cub.2010.03.049.
Article CAS PubMed Google Scholar
Yellman C, Tao H, He B, Hirsh J. Conserved and sexually dimorphic behavioral responses to biogenic amines in decapitated Drosophila. Proc Natl Acad Sci U S A. 1997;94:4131–6. https://doi.org/10.1073/pnas.94.8.4131.
Article CAS PubMed PubMed Central Google Scholar
Numata H, Miyazaki Y, Ikeno T. Common features in diverse insect clocks. Zoological Lett. 2015;1:10. https://doi.org/10.1186/s40851-014-0003-y.
Article PubMed PubMed Central Google Scholar
Cruse H, Dürr V, Schilling M, Schmitz J. Principles of insect locomotion. In: Arena P, Patanè L, editors. Spatial temporal patterns for action-oriented perception in roving robots. Berlin: Springer; 2009. pp. 43–96.
Gammon DW. Neural effects of allethrin on the free walking cockroach Periplaneta americana: an investigation using defined doses at 15 and 32°C. Pestic Sci. 1978;9:79–81. https://doi.org/10.1002/ps.2780270403.
Moretti AN, Zerba EN, Alzogaray RA. Behavioral and toxicological responses of Rhodnius prolixus and Triatoma infestans (Hemiptera: Reduviidae) to ten monoterpene alcohols. J Med Entomol. 2013;50:1046–54. https://doi.org/10.1603/me12248.
Article CAS PubMed Google Scholar
Alzogaray RA, Zerba EN. Rhodnius prolixus intoxicated. J Insect Physiol. 2017;97:93–113. https://doi.org/10.1016/j.jinsphys.2016.04.004.
Article CAS PubMed Google Scholar
Alzogaray RA. Vinchucas. In: Alzogaray RA, editor. Insectos de Importancia sanitaria en Argentina. Editorial Autores De Argentina. Buenos Aires: Argentina; 2018. pp. 47–54.
Hodoșan C, Gîrd CE, Ghica MV, Dinu-Pîrvu CE, Nistor L, Bărbuică IS, et al. Pyrethrins and pyrethroids: a comprehensive review of natural occurring compounds and their synthetic derivatives. Plants (Basel). 2023;12: 4022. https://doi.org/10.3390/plants12234022.
Article CAS PubMed Google Scholar
Ravula AR, Yenugu S. Pyrethroid based pesticides - chemical and biological aspects. Crit Rev Toxicol. 2021;51:117–40. https://doi.org/10.1080/10408444.2021.1879007.
Article CAS PubMed Google Scholar
Davies TGE, Field LM, Usherwood PNR, Williamson MS. DDT, pyrethrins, pyrethroids and insect sodium channels. Life. 2007;59:151–62. https://doi.org/10.1080/15216540701352042.
Article CAS PubMed Google Scholar
Ahamad A, Kumar J. Pyrethroid pesticides: an overview on classification, toxicological assessment and monitoring. J Hazard Mater Adv. 2023;100284. https://doi.org/10.1016/j.hazadv.2023.100284.
Alzogaray RA, Fontán A, Zerba EN. Evaluation of hyperactivity produced by pyrethroid treatment on third instar nymphs of Triatoma infestans (Hemiptera: Reduviidae). Arch Insect Biochem Physiol. 1997a;35:323–33. https://doi.org/10.1002/(SICI)1520-6327(199705)35:3<323::AID-ARCH6>3.0.CO;2-U.
Article CAS PubMed Google Scholar
Alzogaray RA, Zerba EN. Incoordination, paralysis and recovery after pyrethroid treatment on nymphs III of Triatoma infestans (Hemiptera: Reduviidae). Mem Inst Oswaldo Cruz. 1997b;92:431–5. https://doi.org/10.1590/s0074-02761997000300023.
Article CAS PubMed Google Scholar
Alzogaray RA, Zerba EN. Temperature effect on the insecticidal activity of pyrethroids on Triatoma infestans. Comp Biochem Physiol C Comp Pharmacol Toxicol. 1993;104:485–8. https://doi.org/10.1016/0742-8413(93)90022-d.
Article CAS PubMed Google Scholar
Boina DR, Onagbola EO, Salyani M, Stelinski LL. Influence of posttreatment temperature on the toxicity of insecticides against Diaphorina citri (Hemiptera: Psyllidae). J Econ Entomol. 2009;102:685–91. https://doi.org/10.1603/029.102.0229.
Article CAS PubMed Google Scholar
Muturi EJ, Lampman R, Costanzo K, Alto BW. Effect of temperature and insecticide stress on life-history traits of Culex restuans and Aedes albopictus (Diptera: Culicidae). J Med Entomol. 2011;48:243–50. https://doi.org/10.1603/me10017.
Article CAS PubMed Google Scholar
Busvine JR. A critical review of the techniques for testing insecticides. London: Commonwealth Agricultural Bureaux; 1971.
Elliot M. The pyrethroids: early discovery, recent advances and the future. Pestic Sci. 1989;27:337–51. https://doi.org/10.1002/ps.2780270403.
Alzogaray RA, Zerba EN. Third instar nymphs of Rhodnius prolixus exposed to a-cyanopirethroid: from hyperactivity to death. Arch Insect Biochem Physiol. 2001b;46:119–26. https://doi.org/10.1002/arch.1022.
Article CAS PubMed Google Scholar
Alzogaray RA, Zerba EN. Behavioral response of fifth instar nymphs of Triatoma infestans (Hemiptera: Reduviidae) to pyrethroids. Acta Trop. 2001;78:51–7. https://doi.org/10.1016/s0001-706x(00)00167-4.
Article CAS PubMed Google Scholar
Smyth DG, Blumenfeld OO, Konigsberg W. Reactions of N-ethylmaleimide with peptides and amino acids. Biochem J. 1964;91:589–95. https://doi.org/10.1042/bj0910589.
Article CAS PubMed PubMed Central Google Scholar
Alzogaray RA, Fontán A, Zerba EN. Repellency of DEET to nymphs of Triatoma infestans. J Med Vet Entomol. 2000;14:6–10. https://doi.org/10.1046/j.1365-2915.2000.00213.x.
Santa Cruz X, Sfara V. Chemical signals are involved in the detection and preference of food sources in Blattella germanica. Emer Sci J 2018:2:261 – 71. https://doi.org/10.28991/esj-2018-01150
Tabashnik BE, Sanchéz D, Whalon ME, Hollingworth RM, Carrière Y. Defining terms for proactive management of resistance to Bt crops and pesticides. J Med Entomol. 2014;107:496–507. https://doi.org/10.1603/ec13458.
ffrench-Constant RH, Daborn PJ, Le Goff G. The genetics and genomics of insecticide resistance. Trends Genet. 2004;20:163–70. https://doi.org/10.1016/j.tig.2004.01.003.
Article CAS PubMed Google Scholar
Sfara V, Zerba EN, Alzogaray RA. Toxicity of pyrethroids and repellence of diethyltoluamide in two deltamethrin-resistant colonies of Triatoma infestans Klug, 1834 (Hemiptera: Reduviidae). Mem Inst Oswaldo Cruz. 2006;101:89–94. https://doi.org/10.1590/s0074-02762006000100017.
Article CAS PubMed Google Scholar
Franz C, Novak J. Sources of Essential Oil. In: Başer KH, Buchbauer G, editors. Handbook of essential oils: science, technology, and applications. Boca Raton: CRC Press; 2010. p. 39–81.
Abdelgaleil SAM, Gad HA, Ramadan GR, El-Bakry AM, El-Sabrout AM. Monoterpenes: chemistry, insecticidal activity against stored product insects and modes of action—a review. Int J Pest Man. 2024;70:267–89. https://doi.org/10.1080/09670874.2021.1982067.
Dudareva N, Klempien A, Muhlemann JK, Kaplan I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013;198:16–32. https://doi.org/10.1111/nph.12145.
Article CAS PubMed Google Scholar
Reynoso MMN, Zerba EN, Alzogaray RA. Toxicological interactions in insects exposed to simple mixtures containing botanical monoterpenes and conventional insecticides. Open Acc J of Toxicol 2020b:4:OAJT.MS.ID.555644. hdl.handle.net/11336/143468.
Gad HA, Ramadan GR, El-Bakry AM, El-Sabrout AM, Abdelgaleil SA. Monoterpenes: promising natural products for public health insect control-a review. Int J Trop Insect Sci. 2022;42:1059–75. https://doi.org/10.1007/s42690-021-00692-4.
Liu Z, Li QX, Song B. Pesticidal activity and mode of action of monoterpenes. J Agric Food Chem. 2022;70:4556–71. https://doi.org/10.1021/acs.jafc.2c00635.
Article CAS PubMed Google Scholar
Marmulla R, Harder J. Microbial monoterpene transformations-a review. Front Microbiol. 2014;5: 346. https://doi.org/10.3389/fmicb.2014.00346.
Comments (0)