Ministério da Saúde. Doenças negligenciadas: estratégias do Ministério Da Saúde. Rev Saude Publica. 2010;44:200–2. https://doi.org/10.1590/S0034-89102010000100023.
WHO - World Health Organization. Working to overcome the global impact of neglected tropical diseases: first WHO report on neglected tropical diseases. 2010. https://apps.who.int/iris/handle/10665/44440 Accessed 10 Dec 2024.
Martins-Melo FR, Ramos AN, Alencar CH, Heukelbach J. Mortality from neglected tropical diseases in Brazil, 2000–2011. Bull World Health Organ. 2016;94:103–10. https://doi.org/10.2471/BLT.15.152363.
FIOCRUZ. Doenças Negligenciadas. https://agencia.fiocruz.br/doen%C3%A7as-negligenciadas Accessed 10 Dec 2024.
WHO - World Health Organization. Neglected tropical diseases: progress towards recovery from Covid-19–2022 update. Control of Neglected Tropical Diseases (NTD). 2022;38,97:465–480. https://iris.who.int/bitstream/handle/10665/363108/WER9738-eng-fre.pdf?sequence=1 Accessed 10 Dec 2024.
de Araújo GR, de Castro PASV, Ávila IR, Bezerra JMT, Barbosa DS. Effects of public health emergencies of international concern on disease control: a systematic review. Rev Panam Salud pública. 2023. https://doi.org/10.26633/RPSP.2023.74. 47,1.
Article PubMed PubMed Central Google Scholar
PROSPERO. International Prospective Register of Systematic Reviews https://www.crd.york.ac.uk/prospero/ Accessed 10 Dec 2024.
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;71. https://doi.org/10.1136/bmj.n71.
WHO - World Health Organization. Neglected tropical diseases. 2024. https://www.who.int/health-topics/neglected-tropical-diseases#tab=tab_1 Accessed 10 Dec 2024.
Corporation for Digital Scholarship. Zotero (6.0.26). 2006. https://www.zotero.org/ Accessed 10 Dec 2024.
Reegan AD, Gandhi MR, Asharaja AC, Devi C, Shanthakumar SP. COVID-19 lockdown: impact assessment on Aedes larval indices, breeding habitats, effects on vector control programme and prevention of dengue outbreaks. Heliyon. 2020;e05181. https://doi.org/10.1016/j.heliyon.2020.e05181.
Khan S, Akbar SMF, Yahiro T, Mahtab MAl, Kimitsuki K, Hashimoto T, Nishizono A. Dengue infections during COVID-19 period: reflection of reality or Elusive Data due to Effect of Pandemic. Int J Environ Res Public Health. 2022;1910768. https://doi.org/10.3390/ijerph191710768.
Sohail A, Anders KL, McGuinness SL, Leder K. The epidemiology of imported and locally acquired dengue in Australia, 2012–2022. J Travel Med. 2024;31. https://doi.org/10.1093/jtm/taae014.
Chen Y, Li N, Lourenço J, Wang L, Cazelles B, Dong L, Li B, Liu Y, Jit M, Bosse NI, Abbott S, Velayudhan R, Wilder-Smith A, Tian H, Brady OJ, Procter SR, Wong KL, Hellewell J, Davies NG, Jarvis CI, McCarthy CV, Medley G, Meakin SR, Rosello A, Finch E, Lowe R, Pearson CAB, Clifford S, Quilty BJ, Flasche S, Gibbs HP, Chapman LAC, Atkins KE, Hodgson D, Barnard RC, Russell TW, Klepac P, Jafari Y, Eggo RM, Mee P, Quaife M, Endo A, Funk S, Hué S, Kucharski AJ, Edmunds WJ, O’Reilly K, Pung R, Villabona-Arenas CJ, Gimma A, Abbas K, Prem K, Knight GM, Sun FY, Waites W, Munday JD, Koltai M, Sandmann FG, Tully DC. Measuring the effects of COVID-19-related disruption on dengue transmission in southeast Asia and Latin America: a statistical modelling study. Lancet Infect Dis. 2022;22:657–67. https://doi.org/10.1016/S1473-3099(22)00025-1.
Article CAS PubMed PubMed Central Google Scholar
Conceição GM, de Barbosa S, Lorenz GL, Bocewicz C, Santana ACD, Marques LMR, de Chiaravalloti-Neto CC. Effect of social isolation in dengue cases in the state of Sao Paulo, Brazil: an analysis during the COVID-19 pandemic. Travel Med Infect Dis. 2021;44:102149. https://doi.org/10.1016/j.tmaid.2021.102149.
Article CAS PubMed PubMed Central Google Scholar
Prestes-Carneiro LE, Barbosa Souza A, Belussi GL, Grande GHD, Bertacco EAM, Vieira AG, Flores EF. Dengue outbreaks in a city with recent transmission in São Paulo state, Brazil. Int J Environ Health Res. 2023;1–14. https://doi.org/10.1080/09603123.2023.2199972.
de Araújo GR, de Sousa SC, Bezerra JMT, Barbosa DS. Effects of the Covid-19 pandemic on the actions of the dengue control program in a metropolitan area in the southeast region of Brazil. Rev patol trop. 2023;52:255–66. https://doi.org/10.5216/rpt.v52i4.75464.
Sheng ZY, Li M, Yang R, Liu YH, Yin XX, Mao JR, Brown HE, An J, Zhou HN, Wang PG. COVID-19 prevention measures reduce dengue spread in Yunnan Province, China, but do not reduce established outbreak. Emerg Microbes Infect. 2022;11:240–9. https://doi.org/10.1080/22221751.2021.2022438.
Article CAS PubMed PubMed Central Google Scholar
Li N, Feng Y, Vrancken B, Chen Y, Dong L, Yang Q, Kraemer MUG, Pybus OG, Zhang H, Brady OJ, Tian H. Assessing the impact of COVID-19 border restrictions on dengue transmission in Yunnan Province, China: an observational epidemiological and phylogenetic analysis. Lancet Reg Health West Pac. 2021;14100259. https://doi.org/10.1016/j.lanwpc.2021.100259.
Cardona-Ospina JA, Arteaga‐Livias K, Villamil‐Gómez WE, Pérez‐Díaz CE, Katterine Bonilla‐Aldana D, Mondragon‐Cardona Á, Solarte‐Portilla M, Martinez E, Millan‐Oñate J, López‐Medina E, López P, Navarro J, Perez‐Garcia L, Mogollon‐Rodriguez E, Rodríguez‐Morales AJ, Paniz‐Mondolfi A. Dengue and COVID‐19, overlapping epidemics? An analysis from Colombia. J Med Virol. 2020;93:522–7. https://doi.org/10.1002/jmv.26194.
Article CAS PubMed PubMed Central Google Scholar
van de Berg S, Charles T, Dörre A, Katz K, Böhm S. Epidemiology of common infectious diseases before and during the COVID-19 pandemic in Bavaria, Germany, 2016 to 2021: an analysis of routine surveillance data. Eurosurveillance. 2023;28. https://doi.org/10.2807/1560-7917.ES.2023.28.41.2300030.
Ahmad Zaki R, Xin NZ. Dengue Trend during COVID-19 pandemic in Malaysia. APJPH. 2023;35:62–4. https://doi.org/10.1177/10105395221134655.
Rahim MH, Dom NC, Ismail SNS, Mulud ZA, Abdullah S, Pradhan B. The impact of novel coronavirus (2019-nCoV) pandemic movement control order (MCO) on dengue cases in Peninsular Malaysia. One Health. 2021. https://doi.org/10.1016/j.onehlt.2021.100222. 12,100222.
Article PubMed PubMed Central Google Scholar
Ong SQ, Ahmad H, Mohd Ngesom AM. Implications of the COVID-19 Lockdown on Dengue Transmission in Malaysia. Infect Dis Rep. 2021;13:148–60. https://doi.org/10.3390/idr13010016.
Article PubMed PubMed Central Google Scholar
Md Iderus NH, Singh SSL, Ghazali SM, Zulkifli AA, Ghazali NAM, Lim MC, Ahmad LCRQ, Md Nadzri MN, Tan CV, Md Zamri ASS, Lai CH, Nordin NS, Kamarudin MK, Wan MK, Mokhtar N, Jelip J, Gill BS, Ahmad NAR. The effects of the COVID-19 pandemic on dengue cases in Malaysia. Front Public Health. 2023;11. https://doi.org/10.3389/fpubh.2023.1213514.
Plasencia-Dueñas R, Failoc‐Rojas VE, Rodriguez‐Morales AJ. Impact of the COVID‐19 pandemic on the incidence of dengue fever in Peru. J Med Virol. 2022;94:393–8. https://doi.org/10.1002/jmv.27298.
Article CAS PubMed Google Scholar
Lim JT, Chew LZX, Choo ELW, Dickens BSL, Ong J, Aik J, Ng LC, Cook AR. Increased dengue transmissions in Singapore Attributable to SARS-CoV-2 Social Distancing measures. J Infect Dis. 2021;223:399–402. https://doi.org/10.1093/infdis/jiaa619.
Article CAS PubMed Google Scholar
Lim JT, Dickens BL, Ong J, Aik J, Lee VJ, Cook AR, Ng LC. Decreased dengue transmission in migrant worker populations in Singapore attributable to SARS-CoV-2 quarantine measures. J Travel Med. 2021;28. https://doi.org/10.1093/jtm/taaa228.
Surendran SN, Nagulan R, Sivabalakrishnan K, Arthiyan S, Tharsan A, Jayadas TTP, Raveendran S, Kumanan T, Ramasamy R. Reduced dengue incidence during the COVID-19 movement restrictions in Sri Lanka from March 2020 to April 2021. BMC Public Health. 2022;2288. https://doi.org/10.1186/s12889-022-12726-8.
Liyanage P, Rocklöv J, Tissera HA. The impact of COVID–19 lockdown on dengue transmission in Sri Lanka; a natural experiment for understanding the influence of human mobility. PLoS Negl Trop Dis. 2021;15:e0009420. https://doi.org/10.1371/journal.pntd.0009420.
Article CAS PubMed PubMed Central Google Scholar
Surendran SN, Nagulan R, Tharsan A, Sivabalakrishnan K, Ramasamy R. Dengue incidence and Aedes Vector collections in Relation to COVID-19 Population mobility restrictions. Trop Med Infect Dis. 2022;7:287. https://doi.org/10.3390/tropicalmed7100287.
Article PubMed PubMed Central Google Scholar
Ariyaratne D, Gomes L, Jayadas TTP, Kuruppu H, Kodituwakku L, Jeewandara C, Pannila Hetti N, Dheerasinghe A, Samaraweera S, Ogg GS, Malavige GN. Epidemiological and virological factors determining dengue transmission in Sri Lanka during the COVID-19 pandemic. PLOS glob Public Health. 2022;e0000399. https://doi.org/10.1371/journal.pgph.0000399.
Saita S, Maeakhian S, Silawan T. Temporal variations and spatial clusters of Dengue in Thailand: longitudinal study before and during the Coronavirus Disease (COVID-19) pandemic. Trop Med Infect Dis. 2022;7:171. https://doi.org/10.3390/tropicalmed7080171.
Article PubMed PubMed Central Google Scholar
Ren J, Chen Z, Ling F, Liu Y, Chen E, Shi X, Guo S, Zhang R, Wang Z, Sun J. The epidemiology of Aedes-borne arboviral diseases in Zhejiang, Southeast China: a 20 years population-based surveillance study. Front Public Health. 2023;11. https://doi.org/10.3389/fpubh.2023.1270781.
Li K, Rui J, Song W, Luo L, Zhao Y, Qu H, Liu H, Wei H, Zhang R, Abudunaibi B, Wang Y, Zhou Z, Xiang T, Chen T. Temporal shifts in 24 notifiable infectious diseases in China before and during the COVID-19 pandemic. Nat Commun. 2024;15:3891. https://doi.org/10.1038/s41467-024-48201-8.
Article CAS PubMed PubMed Central Google Scholar
Chavhan SS, Kashyap V, Gokhale CN, Adsul BB, Gomare M, Kumbhar M, Kadam N, Dhikale PT, Kinge KV. Epidemiological study to assess the impact of COVID-19 pandemic on the occurrence of monsoon-related diseases in the city of Mumbai. J Family Med Prim Care. 2021;10:3595–9. https://doi.org/10.4103/jfmpc.jfmpc_151_21.
Article PubMed PubMed Central Google Scholar
Hibiya K, Shinzato A, Iwata H, Kinjo T, Tateyama M, Yamamoto K, Fujita J. Effect of voluntary human mobility restrictions on vector-borne diseases during the COVID-19 pandemic in Japan: a descriptive epidemiological study using a national database (2016 to 2021). PLoS ONE. 2023;18:e0285107. https://doi.org/10.1371/journal.pone.0285107.
Article CAS PubMed PubMed Central Google Scholar
Steffen R, Lautenschlager S, Fehr J. Travel restrictions and lockdown during the COVID-19 pandemic—impact on notified infectious diseases in Switzerland. J Travel Med. 2020;27. https://doi.org/10.1093/jtm/taaa180.
Guo X, Ma C, Wang L, Zhao N, Liu S, Xu W. The impact of COVID-19 continuous containment and mitigation strategy on the epidemic of vector-borne diseases in China. Parasit Vectors. 2022. https://doi.org/10.1186/s13071-022-05187-w. 15,78.
Article PubMed PubMed Central Google Scholar
Cheng X, Hu J, Luo L, Zhao Z, Zhang N, Hannah MN, Rui J, Lin S, Zhu Y, Wang Y, Yang M, Xu J, Liu X, Yang T, Liu W, Li P, Deng B, Li Z, Liu C, Huang J, Peng Z, Bao C, Chen T. Impact of interventions on the incidence of natural focal diseases during the outbreak of COVID-19 in Jiangsu Province, China. Parasit Vectors. 2021;14:483. https://doi.org/10.1186/s13071-021-04986-x.
Comments (0)