Cutler SJ, et al. Tick-borne diseases and co-infection: current considerations. Ticks tick-borne Dis. 2021;12(1):101607.
Ortiz DI, et al. The impact of deforestation, urbanization, and changing land use patterns on the ecology of mosquito and tick-borne diseases in central America. Insects. 2021;13(1):20.
Article PubMed PubMed Central Google Scholar
Tufts DM, Goethert HK, Diuk-Wasser MA. Host-pathogen associations inferred from bloodmeal analyses of Ixodes scapularis ticks in a low biodiversity setting. Appl Environ Microbiol. 2024 Sep;18(9):e0066724.
Wilson N et al. Tick bite risk factors and prevention measures in an area with emerging Powassan virus disease. Public Health Chall. 2023;2(4).
Ogden NH et al. October., Possible effects of climate change on Ixodid ticks and the pathogens they transmit: predictions and observations. J Med Entomol. 2020;58(Pt 3).
Esposito MM, et al. The impact of human activities on zoonotic infection transmissions. Animals. 2023;13(10):1646.
Article PubMed PubMed Central Google Scholar
Anderson JF, Magnarelli LA. Biology of ticks. Infect Dis Clin N Am. 2008;22(2):195–215.
Parola P, Raoult D. Ticks and tickborne bacterial diseases in humans: an emerging infectious threat. Clin Infect Dis. 2001;32(6):897–928.
Article CAS PubMed Google Scholar
Nava S, Guglielmone AA, Mangold AJ. An overview of systematics and evolution of ticks. Front Biosci. 2009;14(8):2857–77.
AL-Eitan L, Mihyar A. The controversy of SARS‐CoV‐2 integration into the human genome. Rev Med Virol. 2024;34(1):e2511.
Article CAS PubMed Google Scholar
Al-Eitan L, Haddad M, Mihyar A. Poxviruses from the Concept of One Health. Poxviruses. 2024. pp. 21–33.
Laith A-E, Alnemri M. Biosafety and biosecurity in the era of biotechnology: the middle East region. J Biosaf Biosecur. 2022;4(2):130–45.
Laith A-E, et al. Mosquito-borne diseases: assessing risk and strategies to control their spread in the middle East. Journal of Biosafety and Biosecurity; 2024.
Al-Eitan LN, et al. Bat-Borne coronaviruses in Jordan and Saudi Arabia: A threat to public health?? Viruses. 2020;12(12):1413.
Article CAS PubMed PubMed Central Google Scholar
Laith A-E, Sendyani S, Alnemri M. Applications of the one health concept: current status in the middle East. J Biosaf Biosecur. 2023;5(1):21–31.
Saleh MN, et al. Ticks infesting dogs and cats in North America: biology, geographic distribution, and pathogen transmission. Vet Parasitol. 2021;294:109392.
Article PubMed PubMed Central Google Scholar
Villar M et al. Tick and host derived compounds detected in the cement complex substance. Biomolecules. 2020;10(4).
Nicholson WL, et al. Ticks (ixodida), in Medical and veterinary entomology. Elsevier; 2019. pp. 603–72.
Anderson JF. The natural history of ticks. Med Clin. 2002;86(2):205–18.
Nyangiwe N, Yawa M, Muchenje V. Driving forces for changes in geographic range of cattle ticks (Acari: Ixodidae) in Africa: A review. South Afr J Anim Sci. 2018;48(5):829–41.
Umemiya-Shirafuji R, Matsuo T, Fujisaki K. Chapter Thirty‐Four autophagy in ticks. Methods Enzymol. 2008;451:621–38.
Article CAS PubMed Google Scholar
Apanaskevich DA, et al. Life cycles and natural history of ticks. Biology Ticks. 2014;1:59–73.
Sandor AD, et al. Argasid ticks of Palearctic bats: distribution, host selection, and zoonotic importance. Front Vet Sci. 2021;8:684737.
Article PubMed PubMed Central Google Scholar
Berenger J-M, Parola P. Arthropod vectors of medical importance. Infect Dis (Auckl). 4th ed. Amsterdam: Elsevier; 2016. pp. 104–12.
Barker SC, Walker AR. Ticks of Australia. The species that infest domestic animals and humans. Zootaxa. 2014;3816(1):1–144.
Nava S, et al. Ticks of the Southern cone of America: diagnosis, distribution, and hosts with taxonomy, ecology and sanitary importance. Academic; 2017.
Vial L. Biological and ecological characteristics of soft ticks (Ixodida: Argasidae) and their impact for predicting tick and associated disease distribution. Parasite. 2009;16(3):191–202.
Article CAS PubMed Google Scholar
Mans BJ, Venzal JM, Muñoz-Leal S. Soft ticks as parasites and vectors. Front Media SA. 2022;9:1037492. https://doi.org/10.3389/fvets.2022.1037492
Stockman S. Louping-ill. J Comp Pathol Ther. 1918;31:137–93.
Labuda M, Nuttall P. Tick-borne viruses. Parasitology. 2004;129(S1):S221–45.
Article CAS PubMed Google Scholar
Brackney DE, Armstrong PM. Transmission and evolution of tick-borne viruses. Curr Opin Virol. 2016;21:67–74.
Article CAS PubMed Google Scholar
Tokarz R, et al. Genome characterization of long Island tick rhabdovirus, a new virus identified in Amblyomma americanum ticks. Virol J. 2014;11:1–5.
Bárdos V, Rosický B. A proposal for the evaluation of vertebrates as to their role in the circulation of arboviruses. Folia Parasitol. 1979;26(1):89–91.
Hubálek Z, Rudolf I. Tick-borne viruses in Europe. Parasitol Res. 2012;111:9–36.
Faour-Klingbeil D, Todd EC. A review on the rising prevalence of international standards: threats or opportunities for the agri-food produce sector in developing countries, with a focus on examples from the MENA region. Foods. 2018;7(3):33.
Article PubMed PubMed Central Google Scholar
Pasalary M et al. Fauna of ticks (Acari: Ixodidae) and their seasonal infestation rate on Camelus dromedarius (Mammalia: Camelidae) in Masileh region, Qom Province, Iran. Persian J Acarology. 2017;6(1).
Montiel-Parra G, Fuentes-Moreno H, Vargas M. Primer registro de Ixodes cookei (Acari: Ixodidae) Para México. Revista Mexicana De Biodiversidad. 2007;78(1):205–6.
Ergonul O. Crimean-Congo haemorrhagic fever. Lancet Infect Dis. 2006;6(4):203–14.
Article PubMed PubMed Central Google Scholar
Sorvillo TE, et al. Towards a sustainable one health approach to crimean–congo hemorrhagic fever prevention: focus areas and gaps in knowledge. Trop Med Infect Disease. 2020;5(3):113.
Abdulrahman MA. Crimean-Congo hemorrhagic fever, a real health problem in Iraq? IJID Regions; 2025.
Carroll SA, et al. Ancient common ancestry of Crimean-Congo hemorrhagic fever virus. Mol Phylogenet Evol. 2010;55(3):1103–10.
Article CAS PubMed Google Scholar
Zhioua E, et al. Epidemiology of Crimean-Congo hemorrhagic fever virus in Tunisia, North Africa: a one health approach toward prevention and control. IJID One Health. 2024;2:100023.
Scrimgeour EM, et al. Crimean-Congo haemorrhagic fever in Oman. Trans R Soc Trop Med Hyg. 1996;90(3):290–1.
Article CAS PubMed Google Scholar
Shayan S, et al. Crimean-Congo hemorrhagic fever. Lab Med. 2015;46(3):180–9.
Yolcu S, et al. Knowledge levels regarding crimean-congo hemorrhagic fever among emergency healthcare workers in an endemic region. J Clin Med Res. 2014;6(3):197.
PubMed PubMed Central Google Scholar
Control EC. f.D.P.a. Crimean–Congo haemorrhagic fever in Spain. 2016 [cited 2024; Available from: https://www.ecdc.europa.eu/sites/default/files/media/en/publications/Publications/crimean-congo-haemorrhagic-fever-spain-risk-assessment.pdf
Robertson SJ, et al. Tick-borne flaviviruses: dissecting host immune responses and virus countermeasures. Immunol Res. 2009;43(1–3):172–86.
Article CAS PubMed PubMed Central Google Scholar
Ruzek D, Kaucka K. A brief Tale of two pioneering moments: Europe’s first discovery of Tick-Borne encephalitis (TBE) virus beyond the Soviet union and the largest alimentary TBE outbreak in history. Ticks Tick Borne Dis. 2024;15(3):102314.
Kubinski M, et al. Tick-borne encephalitis virus: A quest for better vaccines against a virus on the rise. Vaccines. 2020;8(3):451.
Comments (0)