Nienaber CA, Clough RE (2015) Management of acute aortic dissection. Lancet. 385:800–811. 2015/02/11. https://doi.org/10.1016/s0140-6736(14)61005-9
Rogers RK, Reece TB, Bonaca MP et al (2021) Acute aortic syndromes. Cardiol Clin 39:495–503. 2021/10/24
Sorber R, Hicks CW (2022) Diagnosis and management of Acute aortic syndromes: dissection, penetrating aortic Ulcer, and Intramural Hematoma. Curr Cardiol Rep 24:209–216 2022/01/15. https://doi.org/10.1007/s11886-022-01642-3
Article PubMed PubMed Central Google Scholar
Li Y, Yang N, Duan W et al (2012) Acute aortic dissection in China. Am J Cardiol 110:1056–1061 2012/07/06. https://doi.org/10.1016/j.amjcard.2012.05.044
Paulraj S, Ashok Kumar P, Uprety A et al (2020) Aortic dissection and multimodality imaging. Echocardiography 37:1485–1487 2020/08/10. https://doi.org/10.1111/echo.14820
Liu F, Huang L (2018) Usefulness of ultrasound in the management of aortic dissection. Rev Cardiovasc Med 19:103–109 2019/05/06. https://doi.org/10.31083/j.rcm.2018.03.3182
Whitson MR, Mayo PH (2016) Ultrasonography in the emergency department. Crit Care 20:227. 2016/08/16
Article PubMed PubMed Central Google Scholar
Desai N, Harris T (2018) Extended focused assessment with sonography in trauma. BJA Educ 18:57–62 2018/02/01. https://doi.org/10.1016/j.bjae.2017.10.003
Article CAS PubMed Google Scholar
Lee DK, Kim JH, Oh J et al (2022) Detection of acute thoracic aortic dissection based on plain chest radiography and a residual neural network (Resnet). Sci Rep 12:21884. 2022/12/20
Article CAS PubMed PubMed Central Google Scholar
Song KD (2021) Current status of deep learning applications in abdominal ultrasonography. Ultrasonography 40:177–182 2020/11/28. https://doi.org/10.14366/usg.20085
Walsh SLF, Calandriello L, Silva M et al (2018) Deep learning for classifying fibrotic lung disease on high-resolution computed tomography: a case-cohort study. Lancet Respir Med 6:837–845 2018/09/21. https://doi.org/10.1016/S2213-2600(18)30286-8
Harris RJ, Kim S, Lohr J et al (2019) Classification of aortic dissection and rupture on post-contrast CT images using a convolutional neural network. J Digit Imaging 32:939–946 2019/09/14. https://doi.org/10.1007/s10278-019-00281-5
Article PubMed PubMed Central Google Scholar
Hata A, Yanagawa M, Yamagata K et al (2021) Deep learning algorithm for detection of aortic dissection on non-contrast-enhanced CT. Eur Radiol 31:1151–1159 2020/08/29. https://doi.org/10.1007/s00330-020-07213-w
Mastrodicasa D, Codari M, Baumler K et al (2022) Artificial Intelligence Applications in Aortic Dissection Imaging. Semin Roentgenol 57:357–363 2022/10/21. https://doi.org/10.1053/j.ro.2022.07.001
Article PubMed PubMed Central Google Scholar
Huang G, Liu Z, Maaten LVD et al (2017) Densely Connected Convolutional Networks. In: IEEE Conference on Computer Vision and Pattern Recognition
Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. Computer Science
Guan Q, Wang Y, Ping B et al (2019) Deep convolutional neural network VGG-16 model for differential diagnosing of papillary thyroid carcinomas in cytological images: a pilot study. J Cancer 10:4876–4882. https://doi.org/10.7150/jca.28769
Article PubMed PubMed Central Google Scholar
Chang L, Zhuang W, Wu R et al (2020) DARWIN: A highly flexible platform for imaging research in radiology
Park SH, Han K (2018) Methodologic Guide for evaluating clinical performance and effect of Artificial Intelligence Technology for Medical Diagnosis and prediction. Radiology 286:800–809 2018/01/09. https://doi.org/10.1148/radiol.2017171920
Ko H, Huh J, Kim KW et al (2022) A deep residual U-Net algorithm for automatic detection and quantification of ascites on Abdominopelvic computed tomography images acquired in the Emergency Department: Model Development and Validation. J Med Internet Res 24:e34415 2022/01/05. https://doi.org/10.2196/34415
Article PubMed PubMed Central Google Scholar
Litjens G, Kooi T, Bejnordi BE et al (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88 2017/08/05. https://doi.org/10.1016/j.media.2017.07.005
Jeong HK, Park C, Henao R et al (2023) Deep learning in Dermatology: a systematic review of current approaches, outcomes, and limitations. JID Innov 3:100150. 2023/01/20
Kim J, Kim HJ, Kim C et al (2021) Artificial intelligence in breast ultrasonography. Ultrasonography 40:183–190 2021/01/13. https://doi.org/10.14366/usg.20117
Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big Data 6. https://doi.org/10.1186/s40537-019-0197-0
Yu AC, Eng J (2020) One Algorithm May Not Fit All: how Selection Bias affects machine learning performance. Radiographics 40:1932–1937 2020/09/26. https://doi.org/10.1148/rg.2020200040
Ronneberger O, Fischer P, Brox T (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation. Springer, Cham
Zhu YC, AlZoubi A, Jassim S et al (2021) A generic deep learning framework to classify thyroid and breast lesions in ultrasound images. Ultrasonics 110:106300 2020/11/25. https://doi.org/10.1016/j.ultras.2020.106300
Dosovitskiy A, Fischer P, Springenberg JT et al (2016) Discriminative unsupervised feature learning with Exemplar Convolutional neural networks. IEEE Trans Pattern Anal Mach Intell 38:1734–1747. 2015/11/06
Lee DK, Kim JH, Oh J et al (2023) Author correction: detection of acute thoracic aortic dissection based on plain chest radiography and a residual neural network (Resnet). Sci Rep 13:2324. 2023/02/10
Article CAS PubMed PubMed Central Google Scholar
Lin Z, Li Z, Cao P et al (2022) Deep learning for emergency ascites diagnosis using ultrasonography images. J Appl Clin Med Phys 23:e13695. 2022/06/21
Article PubMed PubMed Central Google Scholar
Richards JR, McGahan et al Focused Assessment with Sonography in Trauma (FAST) in 2017: What Radiologists Can Learn
Comments (0)