Tsimakouridze EV, Alibhai FJ, Martino TA (2015) Therapeutic applications of circadian rhythms for the cardiovascular system. Front Pharmacol 6. https://doi.org/10.3389/FPHAR.2015.00077
Aschoff J (1960) Exogenous and endogenous components in circadian rhythms. Cold Spring Harb Symp Quant Biol 25:11–28. https://doi.org/10.1101/SQB.1960.025.01.004
Article CAS PubMed Google Scholar
Vetter C (2020) Circadian disruption: what do we actually mean? Eur J Neurosci 51:531–550. https://doi.org/10.1111/ejn.14255
Bonnemeier H, Wiegand UKH, Brandes A et al (2003) Circadian profile of cardiac autonomic nervous modulation in healthy subjects: differing effects of aging and gender on heart rate variability. J Cardiovasc Electrophysiol 14:791–799. https://doi.org/10.1046/J.1540-8167.2003.03078.X
Viswambharan H, Carvas JM, Antic V et al (2007) Mutation of the circadian clock gene Per2 alters vascular endothelial function. Circulation 115:2188–2195. https://doi.org/10.1161/CIRCULATIONAHA.106.653303
Article CAS PubMed Google Scholar
Crnko S, Printezi MI, Zwetsloot P-PM et al (2023) The circadian clock remains intact, but with dampened hormonal output in heart failure. EBioMedicine 91:104556. https://doi.org/10.1016/j.ebiom.2023.104556
Article CAS PubMed PubMed Central Google Scholar
Zhong X, Hilton HJ, Gates GJ et al (2005) Increased sympathetic and decreased parasympathetic cardiovascular modulation in normal humans with acute sleep deprivation. J Appl Physiol Bethesda Md 1985 98:2024–2032. https://doi.org/10.1152/JAPPLPHYSIOL.00620.2004
Mukamal KJ, Muller JE, Maclure M et al (2000) Increased risk of congestive heart failure among infarctions with nighttime onset. Am Heart J 140:438–442. https://doi.org/10.1067/mhj.2000.108830
Article CAS PubMed Google Scholar
Martino TA, Tata N, Simpson JA et al (2011) The primary benefits of angiotensin-converting enzyme inhibition on cardiac remodeling occur during sleep time in murine pressure overload hypertrophy. J Am Coll Cardiol 57:2020–2028. https://doi.org/10.1016/J.JACC.2010.11.022
Article CAS PubMed Google Scholar
Bozkurt B, Coats AJS, Tsutsui H et al (2021) Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure: Endorsed by the Canadian Heart Failure Society, Heart Failure Association of India, Cardiac Society of Australia and New Zealand, and Chinese Heart Failure Association. Eur J Heart Fail 23:352–380. https://doi.org/10.1002/EJHF.2115
Crnko S, Du Pré BC, Sluijter JPG, Van Laake LW (2019) Circadian rhythms and the molecular clock in cardiovascular biology and disease. Nat Rev Cardiol 16:437–447. https://doi.org/10.1038/S41569-019-0167-4
El Jamal N, Lordan R, Teegarden SL et al (2023) The circadian biology of heart failure. Circ Res 132:223–237. https://doi.org/10.1161/CIRCRESAHA.122.321369
Article CAS PubMed PubMed Central Google Scholar
Hastings MH, Maywood ES, Brancaccio M (2018) Generation of circadian rhythms in the suprachiasmatic nucleus. Nat Rev Neurosci 19:453–469. https://doi.org/10.1038/S41583-018-0026-Z
Article CAS PubMed Google Scholar
Kalsbeek A, Bruinstroop E, Yi CX et al (2010) Hypothalamic control of energy metabolism via the autonomic nervous system. Ann N Y Acad Sci 1212:114–129. https://doi.org/10.1111/J.1749-6632.2010.05800.X
Article CAS PubMed Google Scholar
Zhang R, Lahens NF, Ballance HI et al (2014) A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A 111:16219–16224. https://doi.org/10.1073/PNAS.1408886111
Article CAS PubMed PubMed Central Google Scholar
Solt LA, Kojetin DJ, Burris TP (2011) The REV-ERBs and RORs: molecular links between circadian rhythms and lipid homeostasis. Future Med Chem 3:623–638. https://doi.org/10.4155/FMC.11.9
Article CAS PubMed Google Scholar
Bray MS, Shaw CA, Moore MWS et al (2008) Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression. Am J Physiol Heart Circ Physiol 294:H1036. https://doi.org/10.1152/AJPHEART.01291.2007
Article CAS PubMed Google Scholar
Stangherlin A, Seinkmane E, O’Neill JS (2021) Understanding circadian regulation of mammalian cell function, protein homeostasis, and metabolism. Curr Opin Syst Biol 28:None. https://doi.org/10.1016/j.coisb.2021.100391
Heyde I, Oster H (2019) Differentiating external zeitgeber impact on peripheral circadian clock resetting. Sci Rep 9:20114. https://doi.org/10.1038/S41598-019-56323-Z
Article CAS PubMed PubMed Central Google Scholar
Paula ABR, Resende LT, Jardim IABA et al (2022) The effect of diet on the cardiac circadian clock in mice: a systematic review. Metabolites 12:1273. https://doi.org/10.3390/metabo12121273
Article CAS PubMed PubMed Central Google Scholar
Gabriel BM, Zierath JR (2019) Circadian rhythms and exercise - re-setting the clock in metabolic disease. Nat Rev Endocrinol 15:197–206. https://doi.org/10.1038/S41574-018-0150-X
Morf J, Schibler U (2013) Body temperature cycles: gatekeepers of circadian clocks. Cell Cycle Georget Tex 12:539–540. https://doi.org/10.4161/cc.23670
Durgan DJ, Hotze MA, Tomlin TM et al (2005) The intrinsic circadian clock within the cardiomyocyte. Am J Physiol Heart Circ Physiol 289:H1530. https://doi.org/10.1152/AJPHEART.00406.2005
Article CAS PubMed Google Scholar
Davidson AJ, London B, Block GD, Menaker M (2005) Cardiovascular tissues contain independent circadian clocks. Clin Exp Hypertens N Y N 1993 27:307–311. https://doi.org/10.1081/CEH-48933
Martino TA, Oudit GY, Herzenberg AM et al (2008) Circadian rhythm disorganization produces profound cardiovascular and renal disease in hamsters. Am J Physiol Regul Integr Comp Physiol 294:R1675. https://doi.org/10.1152/AJPREGU.00829.2007
Article CAS PubMed Google Scholar
Young ME, Brewer RA, Peliciari-Garcia RA et al (2014) Cardiomyocyte-specific BMAL1 plays critical roles in metabolism, signaling, and maintenance of contractile function of the heart. J Biol Rhythms 29:257–276. https://doi.org/10.1177/0748730414543141
Article CAS PubMed PubMed Central Google Scholar
Ingle KA, Kain V, Goel M et al (2015) Cardiomyocyte-specific Bmal1 deletion in mice triggers diastolic dysfunction, extracellular matrix response, and impaired resolution of inflammation. Am J Physiol Heart Circ Physiol 309:H1827–H1836. https://doi.org/10.1152/AJPHEART.00608.2015
Article CAS PubMed PubMed Central Google Scholar
Yang G, Chen L, Grant GR et al (2016) Timing of expression of the core clock gene Bmal1 influences its effects on aging and survival. Sci Transl Med 8:324ra16. https://doi.org/10.1126/scitranslmed.aad3305
Article CAS PubMed PubMed Central Google Scholar
Song S, Tien C-L, Cui H et al (2022) Myocardial Rev-erb-mediated diurnal metabolic rhythm and obesity paradox. Circulation 145:448–464. https://doi.org/10.1161/CIRCULATIONAHA.121.056076
Article CAS PubMed PubMed Central Google Scholar
Alibhai FJ, LaMarre J, Reitz CJ et al (2017) Disrupting the key circadian regulator CLOCK leads to age-dependent cardiovascular disease. J Mol Cell Cardiol 105:24–37. https://doi.org/10.1016/j.yjmcc.2017.01.008
Article CAS PubMed Google Scholar
Lefta M, Campbell KS, Feng HZ et al (2012) Development of dilated cardiomyopathy in Bmal1-deficient mice. Am J Physiol Heart Circ Physiol 303:H475. https://doi.org/10.1152/AJPHEART.00238.2012
Comments (0)