Knowledge of NUMTs and mitochondrial DNA specific primer designing is of utmost importance to avoid misidentification of heteroplasmic mutations

Akanuma J, Muraki K, Komaki H, Nonaka I, Goto YI. Two pathogenic point mutations exist in the authentic mitochondrial genome, not in the nuclear pseudogene. J Hum Genet. 2000;45(6):337–41. https://doi.org/10.1007/s100380070004.

Article  CAS  PubMed  Google Scholar 

Balciuniene J, Balciunas D. A nuclear mtDNA concatemer (Mega-NUMT) could mimic paternal inheritance of mitochondrial genome. Front Genet. 2019;10:518. https://doi.org/10.3389/fgene.2019.00518.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaig MR, Zernotti ME, Soria NW, Romero OF, Romero MF, Gerez NM. A mutation in mitochondrial 12S rRNA, A827G, in argentinean family with hearing loss after aminoglycoside treatment. Biochem Biophys Res Commun. 2008;368(3):631–6. https://doi.org/10.1016/j.bbrc.2008.01.143.

Article  CAS  PubMed  Google Scholar 

Chen R, Aldred MA, Weiling Xu, Zein J, Bazeley P, Comhair SAA, Meyers DA, Bleecker ER, Liu C, Erzurum SC, Bo Hu. Comparison of whole genome sequencing and targeted sequencing for mitochondrial DNA. Mitochondrion. 2021;58:303–10. https://doi.org/10.1016/j.mito.2021.01.006.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dayama G, Zhou W, Prado-Martinez J, Marques-Bonet T, Mills RE. Characterization of nuclear mitochondrial insertions in the whole genomes of primates. NAR Genomics Bioinform. 2020. https://doi.org/10.1093/nargab/lqaa089.

Article  Google Scholar 

Diroma MA, Calabrese C, Simone D, Santorsola M, Calabrese FM, Gasparre G, Attimonelli M. Extraction and annotation of human mitochondrial genomes from 1000 Genomes Whole Exome Sequencing data. BMC Genomics. 2014;15(3):1–15. https://doi.org/10.1186/1471-2164-15-S3-S2.

Article  CAS  Google Scholar 

Goios A, Amorim A, Pereira L. Mitochondrial DNA pseudogenes in the nuclear genome as possible sources of contamination. Int Congress Series. 2006;1288:697–9.

Article  Google Scholar 

Goios A, Prieto L, Amorim A, Pereira L. Specificity of mtDNA-directed PCR—influence of NUclear MTDNA insertion (NUMT) contamination in routine samples and techniques. Int J Legal Med. 2008;122:341–5. https://doi.org/10.1007/s00414-007-0191-5.

Article  PubMed  Google Scholar 

Hirano M, Shtilbans A, Mayeux R, Davidson MM, DiMauro S, Knowles JA, Schon EA. Apparent mtDNA heteroplasmy in Alzheimer’s disease patients and in normals due to PCR amplification of nucleus-embedded mtDNA pseudogenes. Proc Natl Acad Sci. 1997;94(26):14894–9. https://doi.org/10.1073/pnas.94.26.14894.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hodgkinson A, Idaghdour Y, Gbeha E, Grenier JC, Hip-Ki E, Bruat V, Awadalla P. High-resolution genomic analysis of human mitochondrial RNA sequence variation. Science. 2014;344(6182):413–5. https://doi.org/10.1126/science.1251110.

Article  CAS  PubMed  Google Scholar 

Kwon H, Tan DJ, Bai RK, Wong LJC. Enhanced detection of deleterious mutations by TTGE analysis of mother and child’s DNA side by side. Mitochondrial Pathogenesis: Springer; 2004.

Google Scholar 

Laricchia KM, Lake NJ, Watts NA, Shand M, Haessly A, et al. Aggregation Database Consortium Mitochondrial DNA variation across 56,434 individuals in gnomAD. Genome Res. 2022;32(3):569–82. https://doi.org/10.1101/gr.276013.121.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Malik AN, Shahni R, Rodriguez-de-Ledesma A, Laftah A, Cunningham P. Mitochondrial DNA as a non-invasive biomarker: accurate quantification using real time quantitative PCR without co-amplification of pseudogenes and dilution bias. Biochem Biophys Res Commun. 2011;412(1):1–7. https://doi.org/10.1016/j.bbrc.2011.06.067.

Article  CAS  PubMed  Google Scholar 

Molnar MJ, Kovacs GG. Mitochondrial diseases Handbook of clinical neurology. Neuropathology: Elsevier; 2018.

Google Scholar 

Parfait B, Rustin P, Munnich A, Rötig A. Coamplification of nuclear pseudogenes and assessment of heteroplasmy of mitochondrial DNA mutations. Biochem Biophys Res Commun. 1998;247(1):57–9. https://doi.org/10.1006/bbrc.1998.8666.

Article  CAS  PubMed  Google Scholar 

Parr RL, Maki J, Reguly B, Dakubo GD, Aguirre A, Wittock R, Thayer RE. The pseudo-mitochondrial genome influences mistakes in heteroplasmy interpretation. BMC Genomics. 2006;7:1–13. https://doi.org/10.1186/1471-2164-7-185.

Article  CAS  Google Scholar 

Ramos A, Santos C, Alvarez L, Nogués R, Aluja MP. Human mitochondrial DNA complete amplification and sequencing: A new validated primer set that prevents nuclear DNA sequences of mitochondrial origin co-amplification. Electrophoresis. 2009;30(9):1587–93. https://doi.org/10.1002/elps.200800601.

Article  CAS  PubMed  Google Scholar 

Schon EA, DiMauro S, Hirano M. Human mitochondrial DNA: roles of inherited and somatic mutations. Nat Rev Genet. 2012;13(12):878–90. https://doi.org/10.1038/nrg3275.5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schon KR, Horvath R, Wei W, Calabrese C, Tucci A, Ibañez K, Chinnery PF. Use of whole genome sequencing to determine genetic basis of suspected mitochondrial disorders: cohort study. BMJ. 2021. https://doi.org/10.1136/bmj-2021-066288.

Article  PubMed  PubMed Central  Google Scholar 

Stenton SL, Prokisch H. Genetics of mitochondrial diseases: identifying mutations to help diagnosis. EBioMedicine. 2020. https://doi.org/10.1016/j.ebiom.2020.102784.

Article  PubMed  PubMed Central  Google Scholar 

Taylor RW, Taylor GA, Morris CM, Edwardson JM, Turnbull DM. Diagnosis of mitochondrial disease: assessment of mitochondrial DNA heteroplasmy in blood. Biochem Biophys Res Commun. 1998;251(3):883–7. https://doi.org/10.1006/bbrc.1998.9553.

Article  CAS  PubMed  Google Scholar 

Thangaraj K, Joshi MB, Reddy AG, Rasalkar AA, Singh L. Sperm mitochondrial mutations as a cause of low sperm motility. J Androl. 2003;24(3):388–92. https://doi.org/10.1002/j.1939-4640.2003.tb02687.x.

Article  PubMed  Google Scholar 

Wallace DC, Chalkia D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb Perspect Biol. 2013;5(11): a021220. https://doi.org/10.1101/cshperspect.a021220.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wallace DC, Stugard C, Murdock D, Schurr T, Brown MD. Ancient mtDNA sequences in the human nuclear genome: a potential source of errors in identifying pathogenic mutations. Proc Natl Acad Sci. 1997;94(26):14900–5. https://doi.org/10.1073/pnas.94.26.14900.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Y, Zhang E, Ye C, Wu B. Refractory hypotension in a late-onset mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) male with m. 3243 A> G mutation: a case report. Brain Sci. 2023;13(7):1080. https://doi.org/10.3390/brainsci13071080.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei W, Schon KR, Elgar G, Orioli A, Tanguy M, Giess A, Chinnery PF. Nuclear-embedded mitochondrial DNA sequences in 66083 human genomes. Nature. 2022;611(7934):105–14. https://doi.org/10.1038/s41586-022-05288-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Woischnik M, Moraes CT. Pattern of organization of human mitochondrial pseudogenes in the nuclear genome. Genome Res. 2002;12(6):885–93. https://doi.org/10.1101/gr.227202.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xue L, Moreira JD, Smith KK, Fetterman JL. The Mighty NUMT: mitochondrial DNA Flexing Its Code in the Nuclear Genome. Biomolecules. 2023;13(5):753. https://doi.org/10.3390/biom13050753.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif