Debnath, T.; Kim, D.H.; Lim, B.O. Natural products as a source of anti-inflammatory agents associated with inflammatory bowel disease. Molecules 2013, 18, 7253–7270. https://doi.org/10.3390/molecules18067253.
Gautam, R.; Jachak, S.M. Recent developments in anti-inflammatory natural products. Med. Res. Rev. 2009, 29, 767–820. https://doi.org/10.1002/med.20156.
Da Silveira e Sá, R.D.C.; Andrade, L.N.; De Sousa, D.P. A review on antiinflammatory activity of monoterpenes. Molecules 2013, 18, 1227–1254. https://doi.org/10.3390/molecules18011227.
Azab, A.; Nassar, A.; Azab, A.N. Anti-inflammatory activity of natural products. Molecules 2016, 21, 1321. https://doi.org/10.3390/molecules21101321.
Cristofari, G.; Znini, M.; Majidi, L.; Mazouz, H.; Tomi, P.; Costa, J.; Paolini, J. Chemical diversity of essential oils from Asteriscus graveolens (Forssk.) Less.: Identification of cis-8-acetoxychrysanthenyl acetate as a new natural component. Chem. Biodivers. 2012, 9, 727–738. https://doi.org/10.1002/cbdv.201100118.
Benomari, F.Z.; Dib, M.E.A.; Muselli, A.; Costa, J.; Djabou. N. Comparative study of chemical composition of essential oils for two species of Asteriscus genus from Western Algeria. J. Essent. Oil. Res. 2019, 31, 414–424. https://doi.org/10.1080/10412905.2019.1579761.
Chaib, F.; Allali, H.; Bennaceur, M.; Flamini, G. Chemical composition and antimicrobial activity of essential oils from the aerial parts of Asteriscus graveolens (Forssk.) Less. and Pulicaria incisa (Lam.) DC.: Two asteraceae herbs growing wild in the Hoggar. Chem. Biodivers. 2017, 14, e1700092. https://doi.org/10.1002/cbdv.201700092.
Helmy, S.N.; Ezzat, S.R.; Naguib, M.H. Antioxidant, antibacterial activities and phytochemical screening of Asteriscus pygmaeus aerial parts ethanolic extract. GSC Biol. Pharm. Sci. 2019, 9, 041–046. https://doi.org/10.30574/gscbps.2019.9.3.0218.
Triana, J.; Eiroa, J.L.; Morales, M.; Perez, F.J.; Brouard, I.; Quintana, J.; Ruiz-Estévez, M.; Estévez, F.; León, F. Sesquiterpenoids isolated from two species of the Asteriscus Alliance. J. Nat. Prod. 2016, 79, 1292–1297. https://doi.org/10.1021/acs.jnatprod.5b01013.
Farah, R.; Mahfoud, H.M.; Mohamed, D.O.H.; Amoura; Roukia, H.; Naima, H.; Houria, M.; Imane, B.; Chaima, B. Ethnobotanical study of some medicinal plants from Hoggar, Algeria. J. Med. Plants. Res. 2015, 9, 820–827. https://doi.org/10.5897/jmpr2015.5805
Belhadi, F.; Ouafi, S.; Bouguedoura, N. Phytochemical composition and pharmacological assessment of callus and parent plant of Asteriscus graveolens (Forssk.) Less. from Algerian Sahara. Trop. J. Pharm. Res. 2020, 19, 1895–1901. https://doi.org/10.4314/tjpr.v19i9.14.
Znini, M.; Cristofari, G.; Majidi, L.; Mazouz, H.; Tomi, P.; Paolini, J.; Costa, J. Antifungal activity of essential oil from Asteriscus graveolens against postharvest phytopathogenic fungi in apples. Nat. Prod. Commun. 2011, 6, 1763–1768. https://doi.org/10.1177/1934578x1100601147.
Hammoud, L.; León, F.; Brouard, I.; Gonzalez-Platas, J.; Benayache, S.; Mosset, P.; Benayache, F. Humulene derivatives from Saharian Asteriscus graveolens. Tetrahedron Lett. 2018, 59, 2668–2670. https://doi.org/10.1016/j.tetlet.2018.05.079.
Rauter, A.P.; Branco, I.; Bermejo, J.; Gonzáles, A.G.; Garcıía-Grávalos, M.D.; Feliciano, A.S. Bioactive humulene derivatives from Asteriscus vogelii. Phytochemistry 2001, 56, 167–171.
Imieje, V.O.; Zaki, A.A.; Metwaly, A.M.; Eissa, I.H.; Elkaeed, E.B.; Ali, Z.; Khan, I.A.; Falodun, A. Antileishmanial derivatives of humulene from Asteriscus hierochunticus with in silico tubulin inhibition potential. Rec. Nat. Prod. 2022, 16, 150–171. https://doi.org/10.25135/rnp.253.21.01.1945.
Jakupovic, J.; Lehmann, L.; Bohlmann, F.; Hogdson, A. Nerolidol derivatives from Asteriscus sericeus. Phytochemistry 1987, 26, 2854–2855.
Dahmy, S. El.; Jakupovic, J.; Bohlmann, F.; Sarg, T. New humulene derivatives from Asteriscus graveolens. Tetrahedron 1985, 41, 309–316.
Ahmed, A.U. An overview of inflammation: Mechanism and consequences. Front. Biol. China 2011, 6, 274–281. https://doi.org/10.1007/s11515-011-1123-9.
Krishnamoorthy, S.; Honn, K.V. Inflammation and disease progression. Cancer Metastasis Rev. 2006, 25, 481–491. https://doi.org/10.1007/s10555-006-9016-0.
Whiteley, P.E.; Dalrymple, S.A. Models of inflammation: Carrageenaninduced paw edema in the rat. Curr. Protoc. Pharmacol. 2001, 00:5.4.1-5.4.3
Cui, J.; Jia, J. Natural COX-2 inhibitors as promising anti-inflammatory agents: An update. Curr. Med .Chem. 2021, 28, 3622–3646. https://doi.org/10.2174/1875533xmtewdmdin5.
van Loo, G.; Bertrand, M.J.M. Death by TNF: A road to inflammation. Nat. Rev. Immunol. 2023, 23, 289–303. https://doi.org/10.1038/s41577-022-00792-3.
Agmon-Levin, N.; Mosca, M.; Petri, M.; Shoenfeld, Y. Systemic lupus erythematosus one disease or many? Autoimmun Rev. 2012, 11, 593–595. https://doi.org/10.1016/j.autrev.2011.10.020.
Lajter, I.; Vasas, A.; Béni, Z.; Forgo, P.; Binder, M.; Bochkov, V.; Zupkó, I.; Krupitza, G.; Frisch R.; Kopp, B.; Hohmann, J. Sesquiterpenes from Neurolaena lobata and their antiproliferative and anti-inflammatory activities. J. Nat. Prod. 2014, 77, 576–582. https://doi.org/10.1021/np400834c.
Hai, C.T.; Luyen, N.T.; Giang, D.H.; Minh, B.Q.; Trung, N.Q.; Chinh, P.T.; Hau, D.V.; Dat, N.T. Atractylodes macrocephala rhizomes contain anti-inflammatory sesquiterpenes. Chem. Pharm. Bull. 2023, 71, 451–453. https://doi.org/10.1248/cpb.c22-00779.
Gábor, M. Carrageenan-induced paw edema in the rat and mouse. In Winyard PG, Willoughby DA (eds) Methods in molecular biology: Inflammation protocols methods in molecular biology. Humana Press Inc., Totowa: New Jersey, 2003, pp 129–138
Aratani, Y. Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. Arch. Biochem. Biophys. 2018, 640, 47–52. https://doi.org/10.1016/j.abb.2018.01.004.
Hayley, C.; Stephen, R.Z.; Sarah, F.; Billie, G-C.; Fiona, B.; Lisa, W.; Matthew, K.; Sally, B.; Stephen, H.; Bryan, B. The influence of the neighborhood physical environment on early child health and development: A review and call for research. Heal Place 2015, 33, 25–36.
Paço, A.; Brás, T.; Santos, J.O.; Sampaio, P.; Gomes, A.C.; Duarte, M.F. Antiinflammatory and immunoregulatory action of sesquiterpene lactones. Molecules 2022, 27, 1142. https://doi.org/10.3390/molecules27031142.
Wen-Guang, L.; Xiao-Yu, Z.; Yong-Jie, W.; Xuan, T. Anti-inflammatory effect and mechanism of proanthocyanidins from grape seeds. Acta Pharmacol. Sin. 2001, 22, 1117–1120.
Bancroft, J.D.; Marilyn, G. Theory and Practice of Histological Techniques, 6th ed. Churchill Livingstone: London, 2008.
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2009, 31, 455–461. https://doi.org/10.1002/jcc.21334.
Lee, J.; Cheng, X.; Swails, J.M.; Yeom, M.S.; Eastman, P.K.; Lemkul, J.A.; Wei, S.; Buckner, J.; Jeong, J.C.; Qi, Y.; Jo, S.; Pande, V.S.; Case, D.A.; Brooks, C.L.; MacKerell, A.D.; Klauda, J.B.; Im, W. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 2016, 12, 405–413. https://doi.org/10.1021/acs.jctc.5b00935.
Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. https://doi.org/10.1002/jcc.
Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. https://doi.org/10.1002/jcc.20289.
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38.
Comments (0)