Harnessing the power of Arctium lappa root: a review of its pharmacological properties and therapeutic applications

Horng CT, Wu HC, Chiang NN, Lee CF, Huang YS, Wang HY, Yang JS, Chen FA. Inhibitory effect of burdock leaves on elastase and tyrosinase activity. Exp Ther Med. 2017;14(4):3375–80. https://doi.org/10.3892/ETM.2017.4880.

Article  Google Scholar 

Clerici MT. Retention of bioactive compounds and bifidogenic activity of burdock roots subjected to different processes. Int J Gastron Food Sci. 2022;27: 100448. https://doi.org/10.1016/j.ijgfs.2021.100448.

Article  Google Scholar 

Ishii T, Shimizu T, Imai M, Tamura M, Healy J, Fernandez J, Stock JB, Perez E, Fitzgerald CP. Arctigenin (ATG)-enriched burdock seed oil (ABSO): a new ATG-enriched botanical extract with skin-brightening properties. J Invest Dermatol. 2023;143(5):1226–34. https://doi.org/10.1016/j.jid.2023.03.1240.

Article  Google Scholar 

Ahangarpour A, Heidari H, Oroojan AA, Mirzavandi F, Esfehani KN, Mohammadi ZD. Antidiabetic, hypolipidemic and hepatoprotective effects of Arctium lappa root’s hydro-alcoholic extract on nicotinamide-streptozotocin induced type 2 model of diabetes in male mice. Adv Pharm Bull. 2017;7(2):245–51. https://doi.org/10.22038/AJP.2016.7843.

Article  Google Scholar 

Lee D, Kim CY. Inhibition of advanced glycation end product formation by burdock root extract. J Nutr Health. 2016;49(4):233–40. https://doi.org/10.4163/JNH.2016.49.4.233.

Article  Google Scholar 

Ghedira K, Goetz P. Arctium lappa L. (Asteraceae): Bardane. Phytothérapie. 2013;11(6):376–80. https://doi.org/10.1007/s10298-013-0827-1.

Article  Google Scholar 

Cao J, Zhang P, Xu C, Huang T, Bai Y, Chen KS. Effect of aqueous extract of Arctium lappa L. (burdock) roots on the sexual behavior of male rats. BMC Complement Altern Med. 2012;12(1):8. https://doi.org/10.1186/1472-6882-12-8.

Article  Google Scholar 

Yosri N, Alsharif SM, Xiao J, Musharraf SG, Zhao C, Saeed A, Gao R, Said NS, Di Minno A, Daglia M, Guo Z, Khalifa SAM, El-Seedi HR. Arctium lappa (Burdock): Insights from ethnopharmacology potential, chemical constituents, clinical studies, pharmacological utility and nanomedicine. Biol Pharm Bull. 2022;158: 114104. https://doi.org/10.1016/j.biopha.2022.114104.

Article  CAS  Google Scholar 

Santini A, Tenore GC, Novellino E. Nutraceuticals: a paradigm of proactive medicine. Eur J Pharm Sci. 2017;96:53–61. https://doi.org/10.1016/J.EJPS.2016.09.003.

Article  PubMed  CAS  Google Scholar 

Ferracane R, Graziani G, Gallo M, Fogliano V, Ritieni A. Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves. J Pharm Biomed Anal. 2010;51(2):380–6. https://doi.org/10.1016/J.JPBA.2009.03.018.

Article  Google Scholar 

Kim YS, Kim SH. Physicochemical and antioxidant characteristics of hot water extracts on pre-treatment conditions of burdock (Arctium lappa L.). Food Sci Technol. 2018;47(6):612–9. https://doi.org/10.3746/JKFN.2018.47.6.612.

Article  CAS  Google Scholar 

Azizov UM, Khadzhieva UA, Rakhimov DA, Mezhlumyan LG, Salikhov SA. Chemical composition of dry extract of Arctium lappa roots. Pharm Chem J. 2012;47(6):324–8. https://doi.org/10.1007/S10600-012-0142-3.

Article  Google Scholar 

Pandey J, Dev K, Chattopadhyay S, Kadan S, Sharma T, Maurya R, Sanyal S, Siddiqi MI, Zaid H, Tamrakar AK. β-Sitosterol-d-Glucopyranoside mimics estrogenic properties and stimulates glucose utilization in skeletal muscle cells. Molecules. 2021;26(11):3129. https://doi.org/10.3390/molecules26113129.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Huang S, Dong S, Lin L, Ma QX, Xu M, Ni L, Fan Q. Inulin ameliorates metabolic syndrome in high-fat diet-fed mice by regulating gut microbiota and bile acid excretion. Front Pharmacol. 2023;14:1226448. https://doi.org/10.3389/fphar.2023.1226448.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yuan P, Shao T, Han J, Liu C, Wang G, He SG, Xu SX, Nian SH, Chen K. Burdock fructooligosaccharide as an α-glucosidase inhibitor and its antidiabetic effect on high-fat diet and streptozotocin-induced diabetic mice. J Funct Foods. 2021;86: 104703. https://doi.org/10.1016/J.JFF.2021.104703.

Article  CAS  Google Scholar 

Nisar MF, Nisar MF, Khadim M, Rafiq M, Chen J, Yang Y, Wan CC. Pharmacological properties and health benefits of eugenol: a comprehensive review. Evid Based Complement Alternat Med. 2021;2021:2497354. https://doi.org/10.1155/2021/2497354.

Article  CAS  Google Scholar 

Das A, Harshadha K, Kannan D, Hari Raja K, Jayaprakash B. Evaluation of therapeutic potential of eugenol—a natural derivative of Syzygium aromaticum on cervical cancer. Asian Pac J Cancer Prev. 2018;19(7):1977–83. https://doi.org/10.22034/APJCP.2018.19.7.1977.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Arya SS, Arya SS, Rookes JE, Cahill DM, Lenka SK. Vanillin: a review on the therapeutic prospects of a popular flavouring molecule. Crit Rev Food Sci Nutr. 2021;21(3):304–19. https://doi.org/10.1007/S13596-020-00531-W.

Article  Google Scholar 

Taqvi S, Bhat EA, Sajjad N, Sabir JSM, Qureshi A, Rather IA, Rehman S. Protective effect of vanillic acid in hydrogen peroxide-induced oxidative stress in D.Mel-2 cell line. Saudi J Biol Sci. 2021;28(3):1952–9. https://doi.org/10.1016/J.SJBS.2020.12.023.

Article  Google Scholar 

Kim J, Wie MB, Ahn M, Tanaka A, Matsuda H, Shin T. Benefits of hesperidin in central nervous system disorders: a review. Arch Craniofacial Surg. 2019;52(4):230–9. https://doi.org/10.5115/ACB.19.119.

Article  Google Scholar 

Carević T, Kostić M, Nikolić B, Stojković D, Soković M, Ivanov M. Hesperetin—between the ability to diminish mono- and polymicrobial biofilms and toxicity. Molecules. 2022;27(20):6806. https://doi.org/10.3390/molecules27206806.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang D, Hou J, Wan J, Yang Y, Liu S, Li X, Li W, Dai X, Zhou P, Liu W, Wang P. Dietary chlorogenic acid ameliorates oxidative stress and improves endothelial function in diabetic mice via Nrf2 activation. Food Sci Technol. 2021;49(1): e985363. https://doi.org/10.1177/0300060520985363.

Article  CAS  Google Scholar 

Pavlikova N. Caffeic acid and diseases—mechanisms of action. Int J Mol Sci. 2022;24(1):588. https://doi.org/10.3390/ijms24010588.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Khorasanian AS, Fateh ST, Gholami F, Rasaei N, Gerami H, Khayyatzadeh SS, Shiraseb F, Asbaghi O. The effects of hesperidin supplementation on cardiovascular risk factors in adults: a systematic review and dose–response meta-analysis. Food Sci Technol. 2023;49: e1177708. https://doi.org/10.3389/fnut.2023.1177708.

Article  CAS  Google Scholar 

Al-Ashaal HA, El-Sheltawy ST. Antioxidant capacity of hesperidin from Citrus peel using electron spin resonance and cytotoxic activity against human carcinoma cell lines. Food Sci Technol. 2011;49(3): 509734. https://doi.org/10.3109/13880209.2010.509734.

Article  CAS  Google Scholar 

Topal M, Göçer H, Topal F, Kalın P, Polat Kose L, Gülçin İ, Cetin Cakmak K, Küçük M, Durmaz L, Gören AC, Alwasel S. Antioxidant, antiradical, and anticholinergic properties of cynarin purified from the Illyrian thistle (Onopordum illyricum L.). Food Sci Technol. 2016;31(2): e1018244. https://doi.org/10.3109/14756366.2015.1018244.

Article  CAS  Google Scholar 

Fahmi Elsebai M, Mocan A, Atanasov AG, Atanasov AG. Cynaropicrin: a comprehensive research review and therapeutic potential as an anti-hepatitis C virus agent. Food Sci Technol. 2016;7: e472. https://doi.org/10.3389/fphar.2016.00472.

Article  CAS  Google Scholar 

Anwar S, Shamsi A, Shahbaaz M, Queen A, Khan P, Hasan GM, Islam A, Alajmi MF, Hussain A, Ahmad F, Hassan MI. Rosmarinic acid exhibits anticancer effects via MARK4 inhibition. Food Sci Technol. 2020;10(1): e65648. https://doi.org/10.1038/s41598-020-65648-z.

Article  CAS  Google Scholar 

Singh M, Kapoor A, Bhatnagar A. Physiological and pathological roles of aldose reductase. Food Sci Technol. 2021;11(10): e655. https://doi.org/10.3390/metabo11100655.

Article  CAS  Google Scholar 

Park SY, Hong SS, Han XH, Hwang JS, Lee D, Ro JS, Hwang BY. Lignans from Arctium lappa and their inhibition of LPS-induced nitric oxide production. Food Sci Technol. 2007;55(1): e150. https://doi.org/10.1248/cpb.55.150.

Article  Google Scholar 

Chen GR, Li HF, Dou D, Xu Y, Jiang HS, Li FR, Kang TG. Arctigenin as a lead compound for anticancer agent. Food Sci Technol. 2013;27(23): e821120. https://doi.org/10.1080/14786419.2013.821120.

Article  CAS  Google Scholar 

Li L, Zhang Y, Xiao F, Wang Z, Liu J. Arctiin attenuates lipid accumulation, inflammation, and oxidative stress in nonalcoholic fatty liver disease through inhibiting MAPK pathway. Food Sci Technol. 2022;14(4): e1150. https://doi.org/10.15586/qas.v14i4.1150.

Comments (0)

No login
gif