Matus, M. F. & Häkkinen, H. Understanding ligand-protected noble metal nanoclusters at work. Nat. Rev. Mater. 8, 372–389 (2023).
Jin, R., Zeng, C., Zhou, M. & Chen, Y. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem. Rev. 116, 10346–10413 (2016).
Article PubMed CAS Google Scholar
Chakraborty, I. & Pradeep, T. Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem. Rev. 117, 8208–8271 (2017).
Article PubMed CAS Google Scholar
Zhu, M., Aikens, C. M., Hollander, F. J., Schatz, G. C. & Jin, R. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 130, 5883–5885 (2008).
Article PubMed CAS Google Scholar
Walter, M. et al. A unified view of ligand-protected gold clusters as superatom complexes. Proc. Natl Acad. Sci. USA 105, 9157–9162 (2008).
Article PubMed PubMed Central CAS Google Scholar
Abeyasinghe, N. et al. Enhanced emission from single isolated gold quantum dots investigated using two-photon excited fluorescence near-field scanning optical microscopy. J. Am. Chem. Soc. 138, 16299–16307 (2016).
Article PubMed CAS Google Scholar
Deng, H. et al. Bis-Schiff base linkage-triggered highly bright luminescence of gold nanoclusters in aqueous solution at the single-cluster level. Nat. Commun. 13, 3381 (2022).
Article PubMed PubMed Central CAS Google Scholar
Yu, Y. et al. Identification of a highly luminescent Au22(SG)18 nanocluster. J. Am. Chem. Soc. 136, 1246–1249 (2014).
Article PubMed CAS Google Scholar
Shang, L., Dong, S. & Nienhaus, G. U. Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today 6, 401–418 (2011).
Wang, T., Wang, D., Padelford, J. W., Jiang, J. & Wang, G. Near-infrared electrogenerated chemiluminescence from aqueous soluble lipoic acid Au nanoclusters. J. Am. Chem. Soc. 138, 6380–6383 (2016).
Article PubMed CAS Google Scholar
Chen, S. et al. Near infrared electrochemiluminescence of rod-shape 25-atom AuAg nanoclusters that is hundreds-fold stronger than that of Ru(bpy)3 standard. J. Am. Chem. Soc. 141, 9603–9609 (2019).
Article PubMed CAS Google Scholar
Antonello, S., Perera, N. V., Ruzzi, M., Gascón, J. A. & Maran, F. Interplay of charge state, lability, and magnetism in the molecule-like Au25(SR)18 cluster. J. Am. Chem. Soc. 135, 15585–15594 (2013).
Article PubMed CAS Google Scholar
Zhu, Y., Guo, J., Qiu, X., Zhao, S. & Tang, Z. Optical activity of chiral metal nanoclusters. Acc. Mater. Res. 2, 21–35 (2020).
Knoppe, S. & Bürgi, T. Chirality in thiolate-protected gold clusters. Acc. Chem. Res. 47, 1318–1326 (2014).
Article PubMed CAS Google Scholar
Zhang, M.-M. et al. Alkynyl-stabilized superatomic silver clusters showing circularly polarized luminescence. J. Am. Chem. Soc. 143, 6048–6053 (2021).
Article PubMed CAS Google Scholar
Kwak, K. & Lee, D. Electrochemistry of atomically precise metal nanoclusters. Acc. Chem. Res. 52, 12–22 (2018).
Chen, S. et al. Gold nanoelectrodes of varied size: transition to molecule-like charging. Science 280, 2098–2101 (1998).
Article PubMed CAS Google Scholar
Du, Y., Sheng, H., Astruc, D. & Zhu, M. Atomically precise noble metal nanoclusters as efficient catalysts: a bridge between structure and properties. Chem. Rev. 120, 526–622 (2019).
Shang, L., Xu, J. & Nienhaus, G. U. Recent advances in synthesizing metal nanocluster-based nanocomposites for application in sensing, imaging and catalysis. Nano Today 28, 100767 (2019).
Du, B. et al. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nat. Nanotechnol. 12, 1096–1102 (2017).
Article PubMed PubMed Central CAS Google Scholar
Jiang, X. et al. Noninvasive monitoring of hepatic glutathione depletion through fluorescence imaging and blood testing. Sci. Adv. 7, eabd9847 (2021).
Article PubMed PubMed Central CAS Google Scholar
Zhou, K., Cai, W., Tan, Y., Zhao, Z. & Liu, J. Highly controllable nanoassemblies of luminescent gold nanoparticles with abnormal disassembly-induced emission enhancement for in vivo imaging applications. Angew. Chem. Int. Ed. 61, e202212214 (2022).
Zhang, H. et al. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. Nat. Nanotechnol. 13, 900–905 (2018).
Article PubMed CAS Google Scholar
Wang, Y. et al. Insights into charge transfer at an atomically precise nanocluster/semiconductor interface. Angew. Chem. Int. Ed. 59, 7748–7754 (2020).
Mathew, A. & Pradeep, T. Noble metal clusters: applications in energy, environment, and biology. Part. Part. Syst. Charact. 31, 1017–1053 (2014).
Cao, M. et al. Porphyrinic silver cluster assembled material for simultaneous capture and photocatalysis of mustard-gas simulant. J. Am. Chem. Soc. 141, 14505–14509 (2019).
Article PubMed CAS Google Scholar
Kawawaki, T. et al. Creation of high-performance heterogeneous photocatalysts by controlling ligand desorption and particle size of gold nanocluster. Angew. Chem. Int. Ed. 60, 21340–21350 (2021).
Jadzinsky, P. D., Calero, G., Ackerson, C. J., Bushnell, D. A. & Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 318, 430–433 (2007).
Article PubMed CAS Google Scholar
Yang, H. et al. All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures. Nat. Commun. 4, 2422 (2013).
Heaven, M. W., Dass, A., White, P. S., Holt, K. M. & Murray, R. W. Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J. Am. Chem. Soc. 130, 3754–3755 (2008).
Article PubMed CAS Google Scholar
Desireddy, A. et al. Ultrastable silver nanoparticles. Nature 501, 399–402 (2013).
Article PubMed CAS Google Scholar
Yuan, S.-F. et al. Rod-shaped silver supercluster unveiling strong electron coupling between substituent icosahedral units. J. Am. Chem. Soc. 143, 12261–12267 (2021).
Article PubMed CAS Google Scholar
Hosier, C. A. & Ackerson, C. J. Regiochemistry of thiolate for selenolate ligand exchange on gold clusters. J. Am. Chem. Soc. 141, 309–314 (2019).
Article PubMed CAS Google Scholar
Cai, X. et al. Reversible switching of catalytic activity by shuttling an atom into and out of gold nanoclusters. Angew. Chem. I
Comments (0)