Interaction of methyl-CpG-binding protein 2 (MeCP2) with distinct enhancers in the mouse cortex

Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23, 185–188 (1999).

Article  PubMed  CAS  Google Scholar 

Leonard, H., Cobb, S. & Downs, J. Clinical and biological progress over 50 years in Rett syndrome. Nat. Rev. Neurol. 13, 37–51 (2017).

Article  PubMed  CAS  Google Scholar 

Zoghbi, H. Y. Rett syndrome and the ongoing legacy of close clinical observation. Cell 167, 293–297 (2016).

Article  PubMed  CAS  Google Scholar 

Baubec, T., Ivánek, R., Lienert, F. & Schübeler, D. Methylation-dependent and -independent genomic targeting principles of the MBD protein family. Cell 153, 480–492 (2013).

Article  PubMed  CAS  Google Scholar 

Lewis, J. D. et al. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69, 905–914 (1992).

Article  PubMed  CAS  Google Scholar 

Lister, R. et al. Global epigenomic reconfiguration during mammalian brain development. Science 341, 1237905 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Guo, J. U. et al. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat. Neurosci. 17, 215–222 (2014).

Article  PubMed  CAS  Google Scholar 

Chen, L. et al. MeCP2 binds to non-CG methylated DNA as neurons mature, influencing transcription and the timing of onset for Rett syndrome. Proc. Natl Acad. Sci. USA 112, 5509–5514 (2015).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gabel, H. W. et al. Disruption of DNA-methylation-dependent long gene repression in Rett syndrome. Nature 522, 89–93 (2015).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lagger, S. et al. MeCP2 recognizes cytosine methylated tri-nucleotide and di-nucleotide sequences to tune transcription in the mammalian brain. PLoS Genet. 13, e1006793 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Boxer, L. D. et al. MeCP2 represses the rate of transcriptional initiation of highly methylated long genes. Mol. Cell 77, 294–309 (2020).

Article  PubMed  CAS  Google Scholar 

Clemens, A. W. et al. MeCP2 represses enhancers through chromosome topology-associated DNA methylation. Mol. Cell 77, 279–293 (2020).

Article  PubMed  CAS  Google Scholar 

Lavery, L. A. et al. Losing Dnmt3a dependent methylation in inhibitory neurons impairs neural function by a mechanism impacting Rett syndrome. eLife 9, e52981 (2020).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife 6, e21856 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Stroud, H. et al. An activity-mediated transition in transcription in early postnatal neurons. Neuron 107, 874–890 (2020).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Stroud, H. et al. Early-life gene expression in neurons modulates lasting epigenetic states. Cell 171, 1151–1164 (2017).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bajikar, S. S. et al. MeCP2 regulates Gdf11, a dosage-sensitive gene critical for neurological function. eLife 12, e83806 (2023).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Chen, W. G. et al. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302, 885–889 (2003).

Article  PubMed  CAS  Google Scholar 

Krishnaraj, R., Ho, G. & Christodoulou, J. RettBASE: Rett syndrome database update. Hum. Mutat. 38, 922–931 (2017).

Article  PubMed  Google Scholar 

Zhou, J. et al. A novel pathogenic mutation of MeCP2 impairs chromatin association independent of protein levels. Genes Dev. 37, 883–900 (2023).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ibrahim, A. et al. MeCP2 is a microsatellite binding protein that protects CA repeats from nucleosome invasion. Science 372, eabd558 (2021).

Article  Google Scholar 

Rube, H. T. et al. Sequence features accurately predict genome-wide MeCP2 binding in vivo. Nat. Commun. 7, 11025 (2016).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Buhrmester, H., von Kries, J. P. & Stratling, W. H. Nuclear matrix protein ARBP recognizes a novel DNA sequence motif with high affinity. Biochemistry 34, 4108–4117 (1995).

Article  PubMed  CAS  Google Scholar 

Weitzel, J. M., Buhrmester, H. & Strätling, W. H. Chicken MAR-binding protein ARBP is homologous to rat methyl-CpG-binding protein MeCP2. Mol. Cell. Biol. 17, 5656–5666 (1997).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Connelly, J. C. et al. Absence of MeCP2 binding to non-methylated GT-rich sequences in vivo. Nucleic Acids Res. 48, 3542–3552 (2020).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kinde, B., Wu, D. Y., Greenberg, M. E. & Gabel, H. W. DNA methylation in the gene body influences MeCP2-mediated gene repression. Proc. Natl Acad. Sci. USA 113, 15114–15119 (2016).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Shen, Y. et al. A map of the cis-regulatory sequences in the mouse genome. Nature 488, 116–120 (2012).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Renthal, W. et al. Characterization of human mosaic Rett syndrome brain tissue by single-nucleus RNA sequencing. Nat. Neurosci. 21, 1670–1679 (2018).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Johnson, B. S. et al. Biotin tagging of MeCP2 in mice reveals contextual insights into the Rett syndrome transcriptome. Nat. Med. 23, 1203–1214 (2017).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Liu, Y. et al. MECP2 directly interacts with RNA polymerase II to modulate transcription in human neurons. Neuron 112, 1943–1958 (2024).

Article  PubMed  CAS 

Comments (0)

No login
gif