UBXN9 governs GLUT4-mediated spatial confinement of RIG-I-like receptors and signaling

Rehwinkel, J. & Gack, M. RIG-I-like receptors: their regulation and roles in RNA sensing. Nat. Rev. Immunol. 20, 537–551 (2020).

Article  CAS  PubMed  Google Scholar 

Smyth, D. J. et al. A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat. Genet. 38, 617–619 (2006).

Article  CAS  Google Scholar 

Blum, S. I. et al. MDA5-dependent responses contribute to autoimmune diabetes progression and hindrance. JCI Insight 8, e157929 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Dias Junior, A. G., Sampaio, N. G. & Rehwinkel, J. A balancing act: MDA5 in antiviral immunity and autoinflammation. Trends Microbiol 27, 75–85 (2019).

Article  CAS  PubMed  Google Scholar 

Song, J. et al. Friend or foe: RIG- I like receptors and diseases. Autoimmun. Rev. 21, 103161 (2022).

Article  CAS  PubMed  Google Scholar 

Van den Bossche, J., O’Neill, L. A. & Menon, D. Macrophage immunometabolism: where are we (going)? Trends Immunol. 38, 395–406 (2017).

Article  PubMed  Google Scholar 

Palmer, C. S. Innate metabolic responses against viral infections. Nat. Metab. 4, 1245–1259 (2022).

Article  Google Scholar 

Zhang, Q. et al. AMPK directly phosphorylates TBK1 to integrate glucose sensing into innate immunity. Mol. Cell 82, 4519–4536 (2022).

Article  CAS  Google Scholar 

Zhang, W. et al. Lactate Is a natural suppressor of RLR signaling by targeting MAVS. Cell 178, 176–189 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

He, Q. Q. et al. MAVS integrates glucose metabolism and RIG-I-like receptor signaling. Nat. Commun. 14, 5343 (2023).

Article  CAS  PubMed Central  Google Scholar 

Li, T. et al. O-GlcNAc transferase links glucose metabolism to MAVS-mediated antiviral innate immunity. Cell Host Microbe 24, 791–803 (2018).

Article  CAS  PubMed  Google Scholar 

Xiao, Y. et al. Succinate is a natural suppressor of antiviral immune response by targeting MAVS. Front Immunol. 13, 816378 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mueckler, M. & Thorens, B. The SLC2 (GLUT) family of membrane transporters. Mol. Asp. Med. 34, 121–138 (2015).

Article  Google Scholar 

Freemerman, A. J. et al. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J. Biol. Chem. 289, 7884–7896 (2014).

Article  CAS  Google Scholar 

Everts, B. et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKvarepsilon supports the anabolic demands of dendritic cell activation. Nat. Immunol. 15, 323–332 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bogan, J. Ubiquitin-like processing of TUG proteins as a mechanism to regulate glucose uptake and energy metabolism in fat and muscle. Front. Endocrinol. (Lausanne). 13, 1019405 (2022).

Article  PubMed Central  Google Scholar 

Bogan, J. S., Hendon, N., McKee, A. E., Tsao, T. S. & Lodish, H. F. Functional cloning of TUG as a regulator of GLUT4 glucose transporter trafficking. Nature 425, 727–733 (2003).

Article  CAS  PubMed  Google Scholar 

Yu, C., Cresswell, J., Loffler, M. G. & Bogan, J. S. The glucose transporter 4-regulating protein TUG is essential for highly insulin-responsive glucose uptake in 3T3-L1 adipocytes. J. Biol. Chem. 282, 7710–7722 (2007).

Article  CAS  Google Scholar 

Habtemichael, E. N. et al. Insulin-stimulated endoproteolytic TUG cleavage links energy expenditure with glucose uptake. Nat. Metab. 3, 378–393 (2021).

Article  CAS  PubMed Central  Google Scholar 

Klip, A., McGraw, T. & James, D. Thirty sweet years of GLUT4. J. Biol. Chem. 294, 11369–11381 (2019).

Article  CAS  PubMed  Google Scholar 

Abdelmoez, A. et al. Comparative profiling of skeletal muscle models reveals heterogeneity of transcriptome and metabolism. Am. J. Physiol. Cell Physiol. 318, 615–626 (2020).

Article  Google Scholar 

Nair, S., Poddar, S., Shimak, R. & Diamond, M. Interferon regulatory factor 1 protects against Chikungunya virus-induced immunopathology by restricting infection in muscle cells. J. Virol. 91, e01419–01417 (2017).

Article  PubMed  Google Scholar 

Kato, H. et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101–105 (2006).

Article  CAS  PubMed  Google Scholar 

& Sanchez David, R.Y. et al. Comparative analysis of viral RNA signatures on different RIG-I-like receptors. Elife. 5, e11275 (2016).

Article  PubMed  Google Scholar 

Yang, D. et al. UBR5 promotes antiviral immunity by disengaging the transcriptional brake on RIG-I like receptors. Nat. Commun. 15, 780 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Freemerman, A. et al. Myeloid Slc2a1-deficient murine model revealed macrophage activation and metabolic phenotype are fueled by GLUT1. J. Immunol. 202, 1265–1286 (2019).

Article  CAS  PubMed  Google Scholar 

Minokoshi, Y., Kahn, C. & Kahn, B. Tissue-specific ablation of the GLUT4 glucose transporter or the insulin receptor challenges assumptions about insulin action and glucose homeostasis. J. Biol. Chem. 278, 33609–33612 (2003).

Article  CAS  PubMed  Google Scholar 

Lian, X. et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc. Natl Acad. Sci. USA 109, E1848–E1857 (2012).

Article  CAS  PubMed  Google Scholar 

McMillin, S. L., Schmidt, D. L., Kahn, B. B. & Witczak, C. A. GLUT4 is not necessary for overload-induced glucose uptake or hypertrophic growth in mouse skeletal muscle. Diabetes 66, 1491–1500 (2017).

Article  CAS  PubMed  Google Scholar 

Zisman, A. et al. Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat. Med. 6, 924–928 (2000).

Article  CAS  PubMed  Google Scholar 

Kotani, K., Peroni, O. D., Minokoshi, Y., Boss, O. & Kahn, B. B. GLUT4 glucose transporter deficiency increases hepatic lipid production and peripheral lipid utilization. J. Clin. Invest. 114, 1666–1675 (2004).

Article  CAS  PubMed  Google Scholar 

Wood, T. E. et al. A novel inhibitor of glucose uptake sensitizes cells to FAS-induced cell death. Mol. Cancer Ther. 7, 3546–3555 (2008).

Article  CAS  PubMed  Google Scholar 

Diaz-Vegas, A. et al. A high-content endogenous GLUT4 trafficking assay reveals new aspects of adipocyte biology. Life Sci. Alliance. 6, e202201585 (2022).

Article  PubMed Central  Google Scholar 

Chan, C. C. et al. Type I interferon sensing unlocks dormant adipocyte inflammatory potential. Nat. Commun. 11, 2745 (2020).

Article  CAS  PubMed 

Comments (0)

No login
gif
Back To Top