Rehwinkel, J. & Gack, M. RIG-I-like receptors: their regulation and roles in RNA sensing. Nat. Rev. Immunol. 20, 537–551 (2020).
Article CAS PubMed Google Scholar
Smyth, D. J. et al. A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat. Genet. 38, 617–619 (2006).
Blum, S. I. et al. MDA5-dependent responses contribute to autoimmune diabetes progression and hindrance. JCI Insight 8, e157929 (2023).
Article PubMed PubMed Central Google Scholar
Dias Junior, A. G., Sampaio, N. G. & Rehwinkel, J. A balancing act: MDA5 in antiviral immunity and autoinflammation. Trends Microbiol 27, 75–85 (2019).
Article CAS PubMed Google Scholar
Song, J. et al. Friend or foe: RIG- I like receptors and diseases. Autoimmun. Rev. 21, 103161 (2022).
Article CAS PubMed Google Scholar
Van den Bossche, J., O’Neill, L. A. & Menon, D. Macrophage immunometabolism: where are we (going)? Trends Immunol. 38, 395–406 (2017).
Palmer, C. S. Innate metabolic responses against viral infections. Nat. Metab. 4, 1245–1259 (2022).
Zhang, Q. et al. AMPK directly phosphorylates TBK1 to integrate glucose sensing into innate immunity. Mol. Cell 82, 4519–4536 (2022).
Zhang, W. et al. Lactate Is a natural suppressor of RLR signaling by targeting MAVS. Cell 178, 176–189 (2019).
Article CAS PubMed PubMed Central Google Scholar
He, Q. Q. et al. MAVS integrates glucose metabolism and RIG-I-like receptor signaling. Nat. Commun. 14, 5343 (2023).
Article CAS PubMed Central Google Scholar
Li, T. et al. O-GlcNAc transferase links glucose metabolism to MAVS-mediated antiviral innate immunity. Cell Host Microbe 24, 791–803 (2018).
Article CAS PubMed Google Scholar
Xiao, Y. et al. Succinate is a natural suppressor of antiviral immune response by targeting MAVS. Front Immunol. 13, 816378 (2022).
Article CAS PubMed PubMed Central Google Scholar
Mueckler, M. & Thorens, B. The SLC2 (GLUT) family of membrane transporters. Mol. Asp. Med. 34, 121–138 (2015).
Freemerman, A. J. et al. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J. Biol. Chem. 289, 7884–7896 (2014).
Everts, B. et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKvarepsilon supports the anabolic demands of dendritic cell activation. Nat. Immunol. 15, 323–332 (2014).
Article CAS PubMed PubMed Central Google Scholar
Bogan, J. Ubiquitin-like processing of TUG proteins as a mechanism to regulate glucose uptake and energy metabolism in fat and muscle. Front. Endocrinol. (Lausanne). 13, 1019405 (2022).
Article PubMed Central Google Scholar
Bogan, J. S., Hendon, N., McKee, A. E., Tsao, T. S. & Lodish, H. F. Functional cloning of TUG as a regulator of GLUT4 glucose transporter trafficking. Nature 425, 727–733 (2003).
Article CAS PubMed Google Scholar
Yu, C., Cresswell, J., Loffler, M. G. & Bogan, J. S. The glucose transporter 4-regulating protein TUG is essential for highly insulin-responsive glucose uptake in 3T3-L1 adipocytes. J. Biol. Chem. 282, 7710–7722 (2007).
Habtemichael, E. N. et al. Insulin-stimulated endoproteolytic TUG cleavage links energy expenditure with glucose uptake. Nat. Metab. 3, 378–393 (2021).
Article CAS PubMed Central Google Scholar
Klip, A., McGraw, T. & James, D. Thirty sweet years of GLUT4. J. Biol. Chem. 294, 11369–11381 (2019).
Article CAS PubMed Google Scholar
Abdelmoez, A. et al. Comparative profiling of skeletal muscle models reveals heterogeneity of transcriptome and metabolism. Am. J. Physiol. Cell Physiol. 318, 615–626 (2020).
Nair, S., Poddar, S., Shimak, R. & Diamond, M. Interferon regulatory factor 1 protects against Chikungunya virus-induced immunopathology by restricting infection in muscle cells. J. Virol. 91, e01419–01417 (2017).
Kato, H. et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101–105 (2006).
Article CAS PubMed Google Scholar
& Sanchez David, R.Y. et al. Comparative analysis of viral RNA signatures on different RIG-I-like receptors. Elife. 5, e11275 (2016).
Yang, D. et al. UBR5 promotes antiviral immunity by disengaging the transcriptional brake on RIG-I like receptors. Nat. Commun. 15, 780 (2024).
Article CAS PubMed PubMed Central Google Scholar
Freemerman, A. et al. Myeloid Slc2a1-deficient murine model revealed macrophage activation and metabolic phenotype are fueled by GLUT1. J. Immunol. 202, 1265–1286 (2019).
Article CAS PubMed Google Scholar
Minokoshi, Y., Kahn, C. & Kahn, B. Tissue-specific ablation of the GLUT4 glucose transporter or the insulin receptor challenges assumptions about insulin action and glucose homeostasis. J. Biol. Chem. 278, 33609–33612 (2003).
Article CAS PubMed Google Scholar
Lian, X. et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc. Natl Acad. Sci. USA 109, E1848–E1857 (2012).
Article CAS PubMed Google Scholar
McMillin, S. L., Schmidt, D. L., Kahn, B. B. & Witczak, C. A. GLUT4 is not necessary for overload-induced glucose uptake or hypertrophic growth in mouse skeletal muscle. Diabetes 66, 1491–1500 (2017).
Article CAS PubMed Google Scholar
Zisman, A. et al. Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat. Med. 6, 924–928 (2000).
Article CAS PubMed Google Scholar
Kotani, K., Peroni, O. D., Minokoshi, Y., Boss, O. & Kahn, B. B. GLUT4 glucose transporter deficiency increases hepatic lipid production and peripheral lipid utilization. J. Clin. Invest. 114, 1666–1675 (2004).
Article CAS PubMed Google Scholar
Wood, T. E. et al. A novel inhibitor of glucose uptake sensitizes cells to FAS-induced cell death. Mol. Cancer Ther. 7, 3546–3555 (2008).
Article CAS PubMed Google Scholar
Diaz-Vegas, A. et al. A high-content endogenous GLUT4 trafficking assay reveals new aspects of adipocyte biology. Life Sci. Alliance. 6, e202201585 (2022).
Article PubMed Central Google Scholar
Chan, C. C. et al. Type I interferon sensing unlocks dormant adipocyte inflammatory potential. Nat. Commun. 11, 2745 (2020).
Comments (0)