Impact of potential biomarkers, SNRPE, COX7C, and RPS27, on idiopathic Parkinson’s disease

Acera A, Gómez-Esteban JC, Murueta-Goyena A, Galdos M, Azkargorta M, Elortza F, Ruzafa N et al (2022) Potential tear biomarkers for the diagnosis of Parkinson’s disease—a pilot study. Proteomes 10(1):4. https://doi.org/10.3390/proteomes10010004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Angelopoulou E, Paudel YN, Papageorgiou SG (2022) Environmental impact on the epigenetic mechanisms underlying Parkinson’s disease pathogenesis: a narrative review. Brain Sci 12(2):1–24. https://doi.org/10.3390/brainsci12020175

Article  CAS  Google Scholar 

Armstrong MJ, Okun MS (2020) Diagnosis and treatment of Parkinson disease: a review. JAMA - J Am Med Assoc 323(6):548–560. https://doi.org/10.1001/jama.2019.22360

Article  Google Scholar 

Ashraf D, Khan MR, Dawson TM, Dawson VL (2024) Protein translation in the pathogenesis of Parkinson’s disease. Int J Mol Sci 25(4):2393. https://doi.org/10.3390/ijms25042393

Article  CAS  PubMed  PubMed Central  Google Scholar 

Banerjee R, Starkov AA, Beal MF (2009) Mitochondrial dysfunction in the limelight of Parkinson’s disease pathogenesis. Biochim et Biophys Acta - Mol Basis Dis 1792(7):651–663. https://doi.org/10.1016/j.bbadis.2008.11.007

Article  CAS  Google Scholar 

Cai J, Kim JL, Wang Y, Baumeister TR, Zhu M, Liu A, Lee S, McKeown MJ (2023) Sex, myelin, and clinical characteristics of Parkinson’s disease. Front NeuroSci. https://doi.org/10.3389/fnins.2023.1235524

Article  PubMed  PubMed Central  Google Scholar 

Cerri S, Mus L, and Fabio Blandini (2019) Parkinson’s Disease in women and men: what’s the difference? J Parkinson’s Disease 9(3):501–515. https://doi.org/10.3233/JPD-191683

Article  Google Scholar 

Constantinescu R, Mondello S (2013) Cerebrospinal fluid biomarker candidates for Parkinsonian disorders. Front Neurol. https://doi.org/10.3389/fneur.2012.00187

Article  PubMed  PubMed Central  Google Scholar 

Darden L (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909. https://doi.org/10.1017/CCOL9780521851282.008

Article  Google Scholar 

Deng H, Wu Y, Jankovic J (2015) The EIF4G1 gene and Parkinson’s disease. Acta Neurol Scand 132(2):73–78. https://doi.org/10.1111/ane.12397

Article  CAS  PubMed  Google Scholar 

Dong N, Zhang X (2017) Identification of therapeutic targets for Parkinson’s disease via bioinformatics analysis. Mol Med Rep 15(2):731–735. https://doi.org/10.3892/mmr.2016.6044

Article  CAS  PubMed  Google Scholar 

Egger G, Aparicio A, Jones PA, and Gangning Liang (2004) Epigenetics in Human diseases and prospects of epigenetic therapy. Nature 429(May):457–463

Article  CAS  PubMed  Google Scholar 

Fan L, Zhang S, Li X, Hu Z, Yang J, Zhang S, Zheng H et al (2023) CHCHD2 p.Thr61Ile knock-in mice exhibit motor defects and neuropathological features of Parkinson’s disease. Brain Pathol 33(3):1–18. https://doi.org/10.1111/bpa.13124

Article  CAS  Google Scholar 

Fleming SM, Alberto J (2024) Espay ribosomal s15: a novel rherapeutic target for Parkinson’ disease. Mov Disord 29(8):990. https://doi.org/10.1002/mds.25932

Article  CAS  Google Scholar 

Flønes IH, Toker L, Sandnes DA, Castelli M, Mostafavi S, Lura Njål et al (2024) Mitochondrial complex I deficiency stratifies idiopathic Parkinson’s disease. Nat Commun 15(1):1–18. https://doi.org/10.1038/s41467-024-47867-4

Article  CAS  Google Scholar 

Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jaganmohan R, Jangamreddy M, Mehrpour J, Christoffersson et al (2014) Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol 112:24–49. https://doi.org/10.1016/j.pneurobio.2013.10.004

Article  CAS  PubMed  Google Scholar 

Gu X, Jing WM, Su M, Dou Z, Jiang QQ, Duan KF, Yin B, Cao et al (2023) Expanding causal genes for Parkinson’s disease via multi-omics analysis. Npj Parkinson’s Dis 9(1):1–10. https://doi.org/10.1038/s41531-023-00591-0

Article  CAS  Google Scholar 

Hoozemans JJM, van Haastert ES, Eikelenboom P, de Vos RAI, Rozemuller JM, Scheper W (2007) Activation of the unfolded protein response in Parkinson’s disease. Biochem Biophys Res Commun 354(3):707–711. https://doi.org/10.1016/j.bbrc.2007.01.043

Article  CAS  PubMed  Google Scholar 

Huang Z, Song En’peng, Chen Z, Yu P, Chen W (2024) Integrated bioinformatics analysis for exploring potential biomarkers related to Parkinson’s disease progression. BMC Med Genom 17(1):1–9. https://doi.org/10.1186/s12920-024-01885-9

Article  CAS  Google Scholar 

Ji W, An K, Wang C, Wang S (2022) Bioinformatics analysis of diagnostic biomarkers for Alzheimer’s disease in peripheral blood based on sex differences and support vector machine algorithm. Hereditas 159(1):1–16. https://doi.org/10.1186/s41065-022-00252-x

Article  CAS  Google Scholar 

Jutzi D (2022) Alternative splicing in human biology and disease. Altern Splicing: Methods Protocols. https://doi.org/10.1201/b18027-46

Article  Google Scholar 

Kaut O, Schmitt I, Stahl F, Fröhlich H, Hoffmann P, Gonzalez FJ (2022) Epigenome-wide analysis of DNA methylation in Parkinson’s disease cortex. Life 12(4):1–11. https://doi.org/10.3390/life12040502

Article  CAS  Google Scholar 

Kouli A, Torsney KM, Kuan WL (2018) Parkinson’s disease: etiology, neuropathology, and pathogenesis. Exon Publications, pp 3–26

Google Scholar 

Kumari, Sadhana SS, Kumaran V, Goyal RK, Sharma N, Sinha SN, Dwivedi AK, Srivastava, Jagannathan NR (2020) Identification of potential urine biomarkers in idiopathic Parkinson’s disease using NMR. Clin Chim Acta 510:442–449. https://doi.org/10.1016/j.cca.2020.08.005

Article  CAS  PubMed  Google Scholar 

Li J, Hao S, Liu, Hui Z, Qu LH (2014) StarBase v2.0: decoding MiRNA-CeRNA, MiRNA-NcRNA and protein-RNA interaction networks from large-scale CLIP-seq data. Nucleic Acids Res 42(D1):92–97. https://doi.org/10.1093/nar/gkt1248

Article  CAS  Google Scholar 

Li J, Miao B, Wang S, Dong W, Xu H, Si C, Wang W et al (2022) Hiplot: a comprehensive and easy-to-use web service for boosting publication-ready biomedical data visualization. Brief Bioinform 23(4):1–15. https://doi.org/10.1093/bib/bbac261

Article  CAS  Google Scholar 

Lin F, Lin Y, Chen L, Huang T, Lin T, He J, Lu X et al (2024) Association of physical activity pattern and risk of Parkinson’s disease. Npj Digit Med 7(1):1–7. https://doi.org/10.1038/s41746-024-01135-3

Article  Google Scholar 

Liu, Yuan SH, Zou (2024) Bioinformatics analysis and experimental validation reveal that CDC20 overexpression promotes bladder cancer progression and potential underlying mechanisms. Genes Genomics 46(4):437–449. https://doi.org/10.1007/s13258-024-01505-x

Article  CAS  PubMed  Google Scholar 

Lu B, Gehrke S, Wu Z (2014) RNA metabolism in the pathogenesis of Parkinson’s disease. Brain Res 1584:105–115. https://doi.org/10.1016/j.brainres.2014.03.003

Article  CAS  PubMed  Google Scholar 

Mehra S, Sahay S, Maji SK (2019) α-Synuclein misfolding and aggregation: implications in Parkinson’s disease pathogenesis. Biochim et Biophys Acta - Proteins Proteom 1867(10):890–908. https://doi.org/10.1016/j.bbapap.2019.03.001

Article  CAS  Google Scholar 

Moreno P, Fexova S, George N, Manning JR, Miao Z, Mohammed S, Muñoz-Pomer A (2022) Expression Atlas update: gene and protein expression in multiple species. Nucleic Acids Res 50(D1):D129-40. https://doi.org/10.1093/nar/gkab1030

Article  CAS  PubMed  Google Scholar 

Najafzadeh L, Ebadi M, Shasaltaneh MD (2021) Co-expression network analysis key genes related to ankylosing spondylitis arthritis disease: computational and experimental validation. Iran J Biotechnol 19(1)

Nikon D, and Sika Zheng (2023) Alternative splicing in neurodegenerative disease and the promise of RNA therapies. Nat Rev Neurosci 24(8):457–473. https://doi.org/10.1038/s41583-023-00717-6

Article 

Comments (0)

No login
gif