Yang Y, Wu Z, Yang Y, Lian S, Guo F, Wang Z. A survey of information extraction based on deep learning. Appl Sci. 2022;12(19):9691.
Xue L, Qing S, Pengzhou Z. Relation extraction based on deep learning. In: Proceedings of the ICIS ’18. IEEE, 2018;687–691.
Liu J, Min L, Huang X. An overview of event extraction and its applications. arXiv:2111.03212, 2021.
Li Q, Li J, Sheng J, Cui S, Wu J, Hei Y, Peng H, Guo S, Wang L, Beheshti A, et al. A survey on deep learning event extraction: approaches and applications. IEEE Trans Neural Netw Learn Syst. 2022.
Zhang X, Li D, Wu X. Parsing named entity as syntactic structure. In: Proceedings of the ISCA ’14. 2014;278–282.
Brill E, Mooney RJ. An overview of empirical natural language processing. AI Mag. 1997;18(4):13–13.
Chen Y, Huang R, Pan L, Huang R, Zheng Q, Chen P. A controlled attention for nested named entity recognition. Cognit Comput. 2023;15(1):132–45.
Luo G, Yuan Q, Li J, Wang S, Yang F. Artificial intelligence powered mobile networks: from cognition to decision. IEEE Netw. 2022;36(3):136–44.
Zhang J, Shen D, Zhou G, Su J, Tan C-L. Enhancing hmm-based biomedical named entity recognition by studying special phenomena. Biomed Inf. 2004;37(6):411–22.
Kim J-H, Woodland PC. A rule-based named entity recognition system for speech input. In: Proceedings of ICSLP ’20. 2000;1:528–531.
D. Hanisch, K. Fundel, H.-T. Mevissen, R. Zimmer, J. Fluck. Prominer: rule-based protein and gene entity recognition. BMC Bioinf. 2005;6(1):1–9.
Zhou G, Zhang J, Su J, Shen D, Tan C. Recognizing names in biomedical texts: a machine learning approach. Bioinformatics. 2004;20(7):1178–90.
Goller C, Kuchler A. Learning task-dependent distributed representations by backpropagation through structure. In: Proceedings of the ICNN ’96. vol. 1. IEEE. 1996:347–352.
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;vol. 9, no. 8, pp. 1735–1780, 11.
Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P. Natural language processing (almost) from scratch. Mach Learn Res. 2011;12:2493–537.
Ju M, Miwa M, Ananiadou S. A neural layered model for nested named entity recognition. In: Proceedings of the ACL ’18. 2018;1446–1459.
Straková J, Straka M, Hajic J (2019) Neural architectures for nested NER through linearization. In: Proceedings of the ACL ’19. Florence, Italy: ACL. 2019:5326–5331.
Shibuya T, Hovy E. Nested named entity recognition via second-best sequence learning and decoding. Trans Assoc Comput Linguistics. 2020;8:605–20.
Wang J, Shou L, Chen K, Chen G. Pyramid: a layered model for nested named entity recognition. In: Proceedings of the ACL ’20. 2020:5918–5928.
Ouchi H, Suzuki J, Kobayashi S, Yokoi S, Kuribayashi T, Konno R, Inui K. Instance-based learning of span representations: a case study through named entity recognition. In: Proceedings of the ACL ’20. 2020:6452–6459.
Xia C, Zhang C, Yang T, Li Y, Du N, Wu X, Fan W, Ma F, Yu P. Multi-grained named entity recognition. In: Proceedings of the ACL ’19. 2019:1430–1440.
Li J, Fei H, Liu J, Wu S, Zhang M, Teng C, Ji D, Li F. Unified named entity recognition as word-word relation classification. In: Proceedings of the AAAI ’22. 2022;36(10):10 965–10 973.
Zheng C, Cai Y, Xu J, Leung H-f, Xu G (2019) A boundary-aware neural model for nested named entity recognition. In: Proceedings of the EMNLP ’19. ACL. 2019:357–366.
Tan C, Qiu W, Chen M, Wang R, Huang F. Boundary enhanced neural span classification for nested named entity recognition. In: Proceedings of the AAAI ’20. 2020;34(05):9016–9023.
Tang M, He Y, Xu Y, Xu H, Zhang W, Lin Y. A boundary offset prediction network for named entity recognition. In: Proceedings of the EMNLP ’23. ACL. 2023:14 834–14 846.
Baldini Soares L, FitzGerald N, Ling J, Kwiatkowski T. Matching the blanks: distributional similarity for relation learning. In: Proceedings of the ACL ’19. 2019:2895–2905.
Ye D, Lin Y, Li P, Sun M. Packed levitated marker for entity and relation extraction. In: Proceedings of the ACL ’22. 2022:4904–4917.
Zhong Z, Chen D. A frustratingly easy approach for entity and relation extraction. In: Proceedings of the NAACL ’21. 2021:50–61.
Yu J, Bohnet B, Poesio M. Named entity recognition as dependency parsing. In Proceedings of the ACL ’20. 2020:6470–6476.
Wang Y, Li Y, Tong H, Zhu Z. Hit: nested named entity recognition via head-tail pair and token interaction. In: Proceedings of the EMNLP ’20. 2020:6027–6036.
Huang P, Zhao X, Hu M, Tan Z, Xiao W. T2-NER: a two-stage span-based framework for unified named entity recognition with templates. Trans Assoc Comput Linguistics. 2023;11:1265–82.
Yu J, Chen Y, Zheng Q, Wu Y, Chen P. Full-span named entity recognition with boundary regression. Connec Sci. 2023;35(1):2181483.
Han R, Peng T, Yang C, Wang B, Liu L, Wan X. Is information extraction solved by ChatGPT? An analysis of performance, evaluation criteria, robustness and errors. arXiv:2305.14450, 2023.
Wang S, Sun X, Li X, Ouyang R, Wu F, Zhang T, Li J, Wang G. GPT-NER: named entity recognition via large language models. arXiv:2304.10428, 2023.
Devlin J, Chang M-W, Lee K, Toutanova K. Bert: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the NAACL ’19. 2019;1:4171–4186.
Yongming N, Yanping C, Yongbin Q, Ruizhang H, Ruixue T, Ying H. A joint model for entity boundary detection and entity span recognition. King Saud University-Comput Inf Sci. 2022;34(10):8362–9.
Ainslie J, Ontanon S, Alberti C, Cvicek V, Fisher Z, Pham P, Ravula A, Sanghai S, Wang Q, Yang L. ETC: encoding long and structured inputs in transformers. In: Proceedings of the EMNLP ’20. ACL. 2020:268–284.
Doddington G, Mitchell A, Przybocki M, Ramshaw L, Strassel S, Weischedel R. The automatic content extraction (ace) program-tasks, data, and evaluation. In: Proceedings of the LREC ’05, 2005.
Lu W, Roth D. Joint mention extraction and classification with mention hypergraphs. In: Proceedings of the EMNLP ’15. ACL. 2015:857–867.
Tjong EF, Sang K, De Meulder F. Introduction to the CoNLL-2003 shared task: language-independent named entity recognition. In: Proceedings of the HLT-NAACL ’03. 2003:142–147.
Peng N, Dredze M. Named entity recognition for Chinese social media with jointly trained embeddings. In: Proceedings of the EMNLP ’15. ACL. 2015:548–554.
Kingma D, Ba J. Adam: a method for stochastic optimization. In: Proceedings of the ICLR ’15, San Diega, CA, USA, 2015.
Shen Y, Ma X, Tan Z, Zhang S, Wang W, Lu W. Locate and label: a two-stage identifier for nested named entity recognition. In: Proceedings of the ACL-IJCNLP ’21. 2021:2782–2794.
Shen Y, Wang X, Tan Z, Xu G, Xie P, Huang F, Lu W, Zhuang Y. Parallel instance query network for named entity recognition. In: Proceedings of the ACL ’22. 2022:947–961.
Shen Y, Song K, Tan X, Li D, Lu W, Zhuang Y. Diffusionner: boundary diffusion for named entity recognition. In: Proceedings of the ACL ’23. 2023:3875–3890.
Tan Z, Shen Y, Zhang S, Lu W, Zhuang Y. A sequence-to-set network for nested named entity recognition. In: Proceedings of the IJCAI ’21, 2021.
Comments (0)