Zhang W., Feng C., Jiang H. 2021. Novel target for treating Alzheimer’s diseases: Crosstalk between the Nrf2 pathway and autophagy. Ageing Res. Rev. 65, 101207. https://doi.org/10.1016/j.arr.2020.101207
Article CAS PubMed Google Scholar
Shakya A., McKee N.W., Dodson M., Chapman E., Zhang D.D. 2023. Anti-ferroptotic effects of Nrf2: Beyond the antioxidant response. Mol. Cells. 46, 165‒175. https://doi.org/10.14348/molcells.2023.0005
Article CAS PubMed PubMed Central Google Scholar
Baykal-Köse S., Efe H., Yüce Z. 2021. Autophagy does not contribute to TKI response in a imatinib-resistant chronic myeloid leukemia cell line. Mol. Biol. (Moscow) 55 (4), 573‒579. https://doi.org/10.1134/S0026893321030043
Zinovkin R.A., Grebenchikov O.A. 2020. Transcription factor Nrf2 as a potential therapeutic target for prevention of cytokine storm in COVID-19 patients. Biochemistry (Moscow). 85 (7), 833‒837. https://doi.org/10.1134/S0006297920070111
Article CAS PubMed Google Scholar
Shilovsky G.A., Putyatina T.S., Morgunova G.V., Seliverstov A.V., Ashapkin V.V., Sorokina E.V., Markov A.V., Skulachev V.P. 2021. A crosstalk between the biorhythms and gatekeepers of longevity: Dual role of glycogen synthase kinase-3. Biochemistry (Moscow). 86 (4), 433‒448. https://doi.org/10.1134/S0006297921040052
Article CAS PubMed Google Scholar
Zinovkin R.A., Kondratenko N.D., Zinovkina L.A. 2022. Does Nrf2 play a role of a master regulator of mammalian aging? Biochemistry (Moscow). 87 (12), 1465‒1476. https://doi.org/10.1134/S0006297922120045
Article CAS PubMed Google Scholar
Shilovsky G.A. 2022. Lability of the Nrf2/Keap/ARE cell defense system in different models of cell aging and age-related pathologies. Biochemistry (Moscow). 87, 70‒85. https://doi.org/10.1134/S0006297922010060
Article CAS PubMed Google Scholar
Kondratenko N.D., Zinovkina L.A., Zinovkin R.A. 2023. Transcription factor Nrf2 in endothelial functions. Mol. Biol. (Moscow) 57 (6), 1052‒1069. https://doi.org/10.1134/S0026893323060092
Cloer E.W., Siesser P.F., Cousins E.M., Goldfarb D., Mowrey D.D., Harrison J.S., Weir S.J., Dokholyan N.V., Major M.B. 2018. p62-dependent phase separation of patient-derived Keap1 mutations Nrf2. Mol. Cell. Biol. 38 (22), e00644-17. https://doi.org/10.1128/MCB.00644-17
Article CAS PubMed PubMed Central Google Scholar
Lo S.-C., Hannink M. 2006. PGAM5, a Bcl-XL-interacting protein, is a novel substrate for the redox-regulated Keap1-dependent ubiquitin ligase complex. J. B-iol. Chem. 281, 37893‒37903. https://doi.org/10.1074/jbc.M606539200
O’Mealey G.B., Plafker K.S., Berry W.L., Janknecht R., Chan J.Y., Plafker S.M. 2017. A PGAM5-Keap1-Nrf2 complex is required for stress-induced mitochondrial retrograde trafficking. J. Cell Sci. 130, 3467–3480. https://doi.org/10.1242/jcs.203216
Article CAS PubMed PubMed Central Google Scholar
Yamada T., Murata D., Adachi Y., Itoh K., Kameoka S., Igarashi A., Kato T., Araki Y., Huganir R.L., Dawson T.M., Yanagawa T., Okamoto K., Iijima M., Sesaki H. 2018. Mitochondrial stasis reveals p62-mediated ubiquitination in P-ARKIN-independent mitophagy and mitigates nonalcoholic fatty liver disease. Cell Metab. 28, 588–604.e5. https://doi.org/10.1016/j.cmet.2018.06.014
Article CAS PubMed PubMed Central Google Scholar
Rada P., Rojo A.I., Evrard-Todeschi N., Innamorato N.G., Cotte A., Jaworski T., Tobón-Velasco J.C., Devijver H., García-Mayoral M.F., Van Leuven F., Hayes J.D., Bertho G., Cuadrado A. 2012. Structural and functional characterization of Nrf2 degradation by the glycogen synthase kinase 3/β-TrCP axis. Mol. Cell. Biol. 32 (17), 3486‒3499. https://doi.org/10.1128/MCB.00180-12
Article CAS PubMed PubMed Central Google Scholar
Komatsu M., Kurokawa H., Waguri S., Taguchi K., Kobayashi A., Ichimura Y., Sou Y.S., Ueno I., Sakamoto A., Tong K.I., Kim M., Nishito Y., Iemura S., Natsume T., Ueno T., Kominami E., Motohashi H., Tanaka K., Yamamoto M. 2010. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 12 (3), 213–223. https://doi.org/10.1038/ncb2021
Article CAS PubMed Google Scholar
Jain A., Lamark T., Sjøttem E., Larsen K.B., Awuh J.A., Øvervatn A., McMahon M., Hayes J.D., Johansen T. 2010. p62/SQSTM1 is a target gene for transcription factor Nrf2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J. Biol. Chem. 285 (29), 22576–22591. https://doi.org/10.1074/jbc.M110.118976
Article CAS PubMed PubMed Central Google Scholar
Lamark T., Svenning S., Johansen T. 2017. Regulation of selective autophagy: The p62/SQSTM1 paradigm. Essays Biochem. 61, 609–624. https://doi.org/10.1042/EBC20170035
Taguchi K., Fujikawa N., Komatsu M., Ishii T., Unno M., Akaike T., Motohashi H., Yamamoto M. 2012. Keap1 degradation by autophagy for the maintenance of redox homeostasis. Proc. Natl. Acad. Sci. U. S. A. 109, 13561–13566. https://doi.org/10.1073/pnas.1121572109
Article PubMed PubMed Central Google Scholar
Zhang D.D., Lo S.-C., Sun Z., Habib G.M., Lieberman M.W., Hannink M. 2005. Ubiquitination of Keap1, a BTB-Kelch substrate adaptor protein for Cul3, targets Keap1 for degradation by a proteasome-independent pathway. J. Biol. Chem. 280, 30091–30099. https://doi.org/10.1074/jbc.M501279200
Article CAS PubMed Google Scholar
Duran A., Amanchy R., Linares J.F., Joshi J., Abu-Baker S., Porollo A., Hansen M., Moscat J., Diaz-Meco M.T. 2011. p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol. Cell. 44 (1), 134–146. https://doi.org/10.1016/j.molcel.2011.06.038
Article CAS PubMed PubMed Central Google Scholar
Switon K., Kotulska K., Janusz-Kaminska A., Zmorzynska J., Jaworski J. 2017. Molecular neurobiology of mTOR. Neuroscience. 341, 112‒153. https://doi.org/10.1016/j.neuroscience.2016.11.017
Article CAS PubMed Google Scholar
Murugan A.K. 2019. mTOR: Role in cancer, metastasis and drug resistance. Semin. Cancer Biol. 59, 92–111. https://doi.org/10.1016/j.semcancer.2019.07.003
Article CAS PubMed Google Scholar
Kim J., Cha Y.-N., Surh Y.-J. 2010. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat. Res. 690 (1‒2), 12–23. https://doi.org/10.1016/j.mrfmmm.2009.09.007
Article CAS PubMed Google Scholar
Pickering A.M., Linder R.A., Zhang H., Forman H.J., Davies K.J.A. 2012. Nrf2-dependent induction of proteasome and Pa28αβ regulator ARE required for adaptation to oxidative stress. J. Biol. Chem. 287 (13), 10021–10031. https://doi.org/10.1074/jbc.M111.277145
Article CAS PubMed PubMed Central Google Scholar
Ghanim B.Y., Qinna N.A. 2022. Nrf2/ARE axis signalling in hepatocyte cellular death. Mol. Biol. Rep. 49 (5), 4039‒4053. https://doi.org/10.1007/s11033-022-07125-6
Article CAS PubMed Google Scholar
Johansen T., Lamark T. 2011. Selective autophagy mediated by autophagic adapter proteins. Autophagy. 7, 279–296. https://doi.org/10.4161/auto.7.3.14487
Article CAS PubMed PubMed Central Google Scholar
Copple I.M., Lister A., Obeng A.D., Kit-teringham N.R., Jenkins R.E., Layfield R., Foster B.J., Goldring C.E., Park B.K. 2010. Physical functional interaction of sequestosome 1 with Keap1 regulates the Keap1–Nrf2 cell defense pathway. J. Biol. Chem. 285, 16782–16788. https://doi.org/10.1074/jbc.M109.096545
Comments (0)