p62: Intersection of Antioxidant Defense and Autophagy Pathways

Zhang W., Feng C., Jiang H. 2021. Novel target for treating Alzheimer’s diseases: Crosstalk between the Nrf2 pathway and autophagy. Ageing Res. Rev. 65, 101207. https://doi.org/10.1016/j.arr.2020.101207

Article  CAS  PubMed  Google Scholar 

Shakya A., McKee N.W., Dodson M., Chapman E., Zhang D.D. 2023. Anti-ferroptotic effects of Nrf2: Beyond the antioxidant response. Mol. Cells. 46, 165‒175. https://doi.org/10.14348/molcells.2023.0005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baykal-Köse S., Efe H., Yüce Z. 2021. Autophagy does not contribute to TKI response in a imatinib-resistant chronic myeloid leukemia cell line. Mol. Biol. (Moscow) 55 (4), 573‒579. https://doi.org/10.1134/S0026893321030043

Article  Google Scholar 

Zinovkin R.A., Grebenchikov O.A. 2020. Transcription factor Nrf2 as a potential therapeutic target for prevention of cytokine storm in COVID-19 patients. Biochemistry (Moscow). 85 (7), 833‒837. https://doi.org/10.1134/S0006297920070111

Article  CAS  PubMed  Google Scholar 

Shilovsky G.A., Putyatina T.S., Morgunova G.V., Seliverstov A.V., Ashapkin V.V., Sorokina E.V., Markov A.V., Skulachev V.P. 2021. A crosstalk between the biorhythms and gatekeepers of longevity: Dual role of glycogen synthase kinase-3. Biochemistry (Moscow). 86 (4), 433‒448. https://doi.org/10.1134/S0006297921040052

Article  CAS  PubMed  Google Scholar 

Zinovkin R.A., Kondratenko N.D., Zinovkina L.A. 2022. Does Nrf2 play a role of a master regulator of mammalian aging? Biochemistry (Moscow). 87 (12), 1465‒1476. https://doi.org/10.1134/S0006297922120045

Article  CAS  PubMed  Google Scholar 

Shilovsky G.A. 2022. Lability of the Nrf2/Keap/ARE cell defense system in different models of cell aging and age-related pathologies. Biochemistry (Moscow). 87, 70‒85. https://doi.org/10.1134/S0006297922010060

Article  CAS  PubMed  Google Scholar 

Kondratenko N.D., Zinovkina L.A., Zinovkin R.A. 2023. Transcription factor Nrf2 in endothelial functions. Mol. Biol. (Moscow) 57 (6), 1052‒1069. https://doi.org/10.1134/S0026893323060092

Article  CAS  Google Scholar 

Cloer E.W., Siesser P.F., Cousins E.M., Goldfarb D., Mowrey D.D., Harrison J.S., Weir S.J., Dokholyan N.V., Major M.B. 2018. p62-dependent phase separation of patient-derived Keap1 mutations Nrf2. Mol. Cell. Biol. 38 (22), e00644-17. https://doi.org/10.1128/MCB.00644-17

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lo S.-C., Hannink M. 2006. PGAM5, a Bcl-XL-interacting protein, is a novel substrate for the redox-regulated Keap1-dependent ubiquitin ligase complex. J. B-iol. Chem. 281, 37893‒37903. https://doi.org/10.1074/jbc.M606539200

Article  CAS  Google Scholar 

O’Mealey G.B., Plafker K.S., Berry W.L., Janknecht R., Chan J.Y., Plafker S.M. 2017. A PGAM5-Keap1-Nrf2 complex is required for stress-induced mitochondrial retrograde trafficking. J. Cell Sci. 130, 3467–3480. https://doi.org/10.1242/jcs.203216

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamada T., Murata D., Adachi Y., Itoh K., Kameoka S., Igarashi A., Kato T., Araki Y., Huganir R.L., Dawson T.M., Yanagawa T., Okamoto K., Iijima M., Sesaki H. 2018. Mitochondrial stasis reveals p62-mediated ubiquitination in P-ARKIN-independent mitophagy and mitigates nonalcoholic fatty liver disease. Cell Metab. 28, 588–604.e5. https://doi.org/10.1016/j.cmet.2018.06.014

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rada P., Rojo A.I., Evrard-Todeschi N., Innamorato N.G., Cotte A., Jaworski T., Tobón-Velasco J.C., Devijver H., García-Mayoral M.F., Van Leuven F., Hayes J.D., Bertho G., Cuadrado A. 2012. Structural and functional characterization of Nrf2 degradation by the glycogen synthase kinase 3/β-TrCP axis. Mol. Cell. Biol. 32 (17), 3486‒3499. https://doi.org/10.1128/MCB.00180-12

Article  CAS  PubMed  PubMed Central  Google Scholar 

Komatsu M., Kurokawa H., Waguri S., Taguchi K., Kobayashi A., Ichimura Y., Sou Y.S., Ueno I., Sakamoto A., Tong K.I., Kim M., Nishito Y., Iemura S., Natsume T., Ueno T., Kominami E., Motohashi H., Tanaka K., Yamamoto M. 2010. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 12 (3), 213–223. https://doi.org/10.1038/ncb2021

Article  CAS  PubMed  Google Scholar 

Jain A., Lamark T., Sjøttem E., Larsen K.B., Awuh J.A., Øvervatn A., McMahon M., Hayes J.D., Johansen T. 2010. p62/SQSTM1 is a target gene for transcription factor Nrf2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J. Biol. Chem. 285 (29), 22576–22591. https://doi.org/10.1074/jbc.M110.118976

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lamark T., Svenning S., Johansen T. 2017. Regulation of selective autophagy: The p62/SQSTM1 paradigm. Essays Biochem. 61, 609–624. https://doi.org/10.1042/EBC20170035

Article  PubMed  Google Scholar 

Taguchi K., Fujikawa N., Komatsu M., Ishii T., Unno M., Akaike T., Motohashi H., Yamamoto M. 2012. Keap1 degradation by autophagy for the maintenance of redox homeostasis. Proc. Natl. Acad. Sci. U. S. A. 109, 13561–13566. https://doi.org/10.1073/pnas.1121572109

Article  PubMed  PubMed Central  Google Scholar 

Zhang D.D., Lo S.-C., Sun Z., Habib G.M., Lieberman M.W., Hannink M. 2005. Ubiquitination of Keap1, a BTB-Kelch substrate adaptor protein for Cul3, targets Keap1 for degradation by a proteasome-independent pathway. J. Biol. Chem. 280, 30091–30099. https://doi.org/10.1074/jbc.M501279200

Article  CAS  PubMed  Google Scholar 

Duran A., Amanchy R., Linares J.F., Joshi J., Abu-Baker S., Porollo A., Hansen M., Moscat J., Diaz-Meco M.T. 2011. p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol. Cell. 44 (1), 134–146. https://doi.org/10.1016/j.molcel.2011.06.038

Article  CAS  PubMed  PubMed Central  Google Scholar 

Switon K., Kotulska K., Janusz-Kaminska A., Zmorzynska J., Jaworski J. 2017. Molecular neurobiology of mTOR. Neuroscience. 341, 112‒153. https://doi.org/10.1016/j.neuroscience.2016.11.017

Article  CAS  PubMed  Google Scholar 

Murugan A.K. 2019. mTOR: Role in cancer, metastasis and drug resistance. Semin. Cancer Biol. 59, 92–111. https://doi.org/10.1016/j.semcancer.2019.07.003

Article  CAS  PubMed  Google Scholar 

Kim J., Cha Y.-N., Surh Y.-J. 2010. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat. Res. 690 (1‒2), 12–23. https://doi.org/10.1016/j.mrfmmm.2009.09.007

Article  CAS  PubMed  Google Scholar 

Pickering A.M., Linder R.A., Zhang H., Forman H.J., Davies K.J.A. 2012. Nrf2-dependent induction of proteasome and Pa28αβ regulator ARE required for adaptation to oxidative stress. J. Biol. Chem. 287 (13), 10021–10031. https://doi.org/10.1074/jbc.M111.277145

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghanim B.Y., Qinna N.A. 2022. Nrf2/ARE axis signalling in hepatocyte cellular death. Mol. Biol. Rep. 49 (5), 4039‒4053. https://doi.org/10.1007/s11033-022-07125-6

Article  CAS  PubMed  Google Scholar 

Johansen T., Lamark T. 2011. Selective autophagy mediated by autophagic adapter proteins. Autophagy. 7, 279–296. https://doi.org/10.4161/auto.7.3.14487

Article  CAS  PubMed  PubMed Central  Google Scholar 

Copple I.M., Lister A., Obeng A.D., Kit-teringham N.R., Jenkins R.E., Layfield R., Foster B.J., Goldring C.E., Park B.K. 2010. Physical functional interaction of sequestosome 1 with Keap1 regulates the Keap1–Nrf2 cell defense pathway. J. Biol. Chem. 285, 16782–16788. https://doi.org/10.1074/jbc.M109.096545

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif