Pre-vascularized porous gelatin-coated β-tricalcium phosphate scaffolds for bone regeneration: an in vivo and in vitro investigation

Ahmadi A, Ebadi SS, Tayebi T, Ebadi SA, Sarzaeem MM, Niknejad H (2022a) Osteogenic differentiation effect of BMP-9 with phenamil and simvastatin on intact human amniotic epithelial stem cells. Iran Biomed J 26(6):463–474. https://doi.org/10.52547/ibj.3748

Article  PubMed  PubMed Central  Google Scholar 

Ahmadi A, Mazloomnejad R, Kasravi M, Gholamine B, Bahrami S, Sarzaeem MM, Niknejad H (2022b) Recent advances on small molecules in osteogenic differentiation of stem cells and the underlying signaling pathways. Stem Cell Res Ther 13(1):518. https://doi.org/10.1186/s13287-022-03204-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bastami F, Paknejad Z, Jafari M, Salehi M, Rezai Rad M, Khojasteh A (2017) Fabrication of a three-dimensional β-tricalcium-phosphate/gelatin containing chitosan-based nanoparticles for sustained release of bone morphogenetic protein-2: implication for bone tissue engineering. Mater Sci Eng: C 72:481–491. https://doi.org/10.1016/j.msec.2016.10.084

Article  CAS  Google Scholar 

Bohner M, Santoni BLG, Döbelin N (2020) β-tricalcium phosphate for bone substitution: synthesis and properties. Acta Biomater 113:23–41. https://doi.org/10.1016/j.actbio.2020.06.022

Article  CAS  PubMed  Google Scholar 

de Silva L, Bernal PN, Rosenberg AJW, Malda J, Levato R, Gawlitta D (2023) Biofabricating the vascular tree in engineered bone tissue. Acta Biomater 156:250–268. https://doi.org/10.1016/j.actbio.2022.08.051

Article  CAS  PubMed  Google Scholar 

Devillard CD, Marquette CA (2021) Vascular tissue engineering: challenges and requirements for an ideal large scale blood vessel [review]. Front Bioeng Biotechnol 9. https://doi.org/10.3389/fbioe.2021.721843

Dong H, Zhu T, Zhang M, Wang D, Wang X, Huang G, Wang S, Zhang M (2021) Polymer scaffolds-enhanced bone regeneration in osteonecrosis therapy [review]. Front Bioeng Biotechnol 9. https://doi.org/10.3389/fbioe.2021.761302

Eltom A, Zhong G, Muhammad A (2019) Scaffold techniques and designs in tissue engineering functions and purposes: a review. Adv Mater Sci Eng 2019:3429527. https://doi.org/10.1155/2019/3429527

Article  CAS  Google Scholar 

Epple C, Haumer A, Ismail T, Lunger A, Scherberich A, Schaefer DJ, Martin I (2019) Prefabrication of a large pedicled bone graft by engineering the germ for de novo vascularization and osteoinduction. Biomaterials 192:118–127. https://doi.org/10.1016/j.biomaterials.2018.11.008

Article  CAS  PubMed  Google Scholar 

Fatemeh B, Maryam V, Armin A, Farangis N, Bita A, Ehsan S-P (2022) Evaluation of immunomodulatory effects of co-culture or supernatant of dexamethasone or IFN-γ-treated adipose-derived mesenchymal stem cells on spleen mononuclear cells. Eur Cytokine Netw 33(3):70–78. https://doi.org/10.1684/ecn.2022.0482

Article  Google Scholar 

Fu J-N, Wang X, Yang M, Chen Y-R, Zhang J-Y, Deng R-H, Zhang Z-N, Yu J-K, Yuan F-Z (2022) Scaffold-based tissue engineering strategies for osteochondral repair [review]. Front Bioeng Biotechnol 9. https://doi.org/10.3389/fbioe.2021.812383

Gandaglia A, Bagno A, Naso F, Spina M, Gerosa G (2011) Cells, scaffolds and bioreactors for tissue-engineered heart valves: a journey from basic concepts to contemporary developmental innovations☆. Eur J Cardiothorac Surg 39(4):523–531. https://doi.org/10.1016/j.ejcts.2010.07.030

Article  PubMed  Google Scholar 

Gorman DE, Wu T, Gilpin SE, Ott HC (2018) A fully automated high-throughput bioreactor system for lung regeneration. Tissue Eng Part C Methods 24(11):671–678. https://doi.org/10.1089/ten.TEC.2018.0259

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hashemi S, Mohammadi Amirabad L, Farzad-Mohajeri S, Rezai Rad M, Fahimipour F, Ardeshirylajimi A, Dashtimoghadam E, Salehi M, Soleimani M, Dehghan MM, Tayebi L, Khojasteh A (2021) Comparison of osteogenic differentiation potential of induced pluripotent stem cells and buccal fat pad stem cells on 3D-printed HA/β-TCP collagen-coated scaffolds. Cell Tissue Res 384(2):403–421. https://doi.org/10.1007/s00441-020-03374-8

Article  CAS  PubMed  Google Scholar 

Heliotis M, Lavery KM, Ripamonti U, Tsiridis E, di Silvio L (2006) Transformation of a prefabricated hydroxyapatite/osteogenic protein-1 implant into a vascularised pedicled bone flap in the human chest. Int J Oral Maxillofac Surg 35(3):265–269. https://doi.org/10.1016/j.ijom.2005.07.013

Article  CAS  PubMed  Google Scholar 

Hojabri M, Tayebi T, Kasravi M, Aghdaee A, Ahmadi A, Mazloomnejad R, Tarasi R, Shaabani A, Bahrami S, Niknejad H (2023) Wet-spinnability and crosslinked Fiber properties of alginate/hydroxyethyl cellulose with varied proportion for potential use in tendon tissue engineering. Int J Biol Macromol 240:124492. https://doi.org/10.1016/j.ijbiomac.2023.124492

Article  CAS  PubMed  Google Scholar 

Huang RL, Kobayashi E, Liu K, Li Q (2016) Bone graft prefabrication following the in vivo bioreactor principle. EBioMedicine 12:43–54. https://doi.org/10.1016/j.ebiom.2016.09.016

Article  PubMed  PubMed Central  Google Scholar 

Jasser RA, AlSubaie A, AlShehri F (2021) Effectiveness of beta-tricalcium phosphate in comparison with other materials in treating periodontal infra-bony defects around natural teeth: a systematic review and meta-analysis. BMC Oral Health 21(1):219. https://doi.org/10.1186/s12903-021-01570-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiao Y, Li C, Liu L, Wang F, Liu X, Mao J, Wang L (2020) Construction and application of textile-based tissue engineering scaffolds: a review. Biomater Sci 8(13):3574–3600. https://doi.org/10.1039/D0BM00157K

Article  CAS  PubMed  Google Scholar 

Kasravi M, Ahmadi A, Babajani A, Mazloomnejad R, Hatamnejad MR, Shariatzadeh S, Bahrami S, Niknejad H (2023) Immunogenicity of decellularized extracellular matrix scaffolds: a bottleneck in tissue engineering and regenerative medicine. Biomater Res 27(1):10. https://doi.org/10.1186/s40824-023-00348-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khojasteh A, Fahimipour F, Eslaminejad MB, Jafarian M, Jahangir S, Bastami F, Tahriri M, Karkhaneh A, Tayebi L (2016) Development of PLGA-coated β-TCP scaffolds containing VEGF for bone tissue engineering. Mater Sci Eng: C 69:780–788. https://doi.org/10.1016/j.msec.2016.07.011

Article  CAS  Google Scholar 

Kokemueller H, Spalthoff S, Nolff M, Tavassol F, Essig H, Stuehmer C, Bormann KH, Rücker M, Gellrich NC (2010) Prefabrication of vascularized bioartificial bone grafts in vivo for segmental mandibular reconstruction: experimental pilot study in sheep and first clinical application. Int J Oral Maxillofac Surg 39(4):379–387. https://doi.org/10.1016/j.ijom.2010.01.010

Article  CAS  PubMed  Google Scholar 

Li K, Tharwat M, Larson EL, Felgendreff P, Hosseiniasl SM, Rmilah AA, Safwat K, Ross JJ, Nyberg SL (2022) Re-endothelialization of decellularized liver scaffolds: a step for bioengineered liver transplantation. Front Bioeng Biotechnol 10:833163. https://doi.org/10.3389/fbioe.2022.833163

Article  PubMed  PubMed Central  Google Scholar 

Lim D, Renteria ES, Sime DS, Ju YM, Kim JH, Criswell T, Shupe TD, Atala A, Marini FC, Gurcan MN, Soker S, Hunsberger J, Yoo JJ (2022) Bioreactor design and validation for manufacturing strategies in tissue engineering. Biodes Manuf 5(1):43–63. https://doi.org/10.1007/s42242-021-00154-3

Article  PubMed  Google Scholar 

Liu Y, Möller B, Wiltfang J, Warnke PH, Terheyden H (2014) Tissue engineering of a vascularized bone graft of critical size with an osteogenic and angiogenic factor-based in vivo bioreactor. Tissue Eng Part A 20(23–24):3189–3197. https://doi.org/10.1089/ten.TEA.2013.0653

Article  CAS  PubMed  Google Scholar 

Liu Y, Zhao Q, Chen C, Wu C, Ma Y (2022) β-tricalcium phosphate/gelatin composite scaffolds incorporated with gentamycin-loaded chitosan microspheres for infected bone defect treatment. PLoS ONE 17(12):e0277522. https://doi.org/10.1371/journal.pone.0277522

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu H, Zhou Y, Ma Y, Xiao L, Ji W, Zhang Y, Wang X (2021) Current application of beta-tricalcium phosphate in bone repair and its mechanism to regulate osteogenesis [review]. Front Mater 8. https://doi.org/10.3389/fmats.2021.698915

Marrella A, Lee TY, Lee DH, Karuthedom S, Syla D, Chawla A, Khademhosseini A, Jang HL (2018) Engineering vascularized and innervated bone biomaterials for improved skeletal tissue regeneration. Mater Today 21(4):362–376. https://doi.org/10.1016/j.mattod.2017.10.005

Article  CAS  Google Scholar 

Masoomikarimi M, Salehi M (2022) Modulation of the immune system promotes tissue regeneration. Mol Biotechnol 64(6):599–610. https://doi.org/10.1007/s12033-021-00430-8

Article  CAS  PubMed  Google Scholar 

Mastrullo V, Cathery W, Velliou E, Madeddu P, Campagnolo P (2020) Angiogenesis in tissue engineering: as nature intended? [review]. Front Bioeng Biotechnol 8. https://doi.org/10.3389/fbioe.2020.00188

Mazloomnejad R, Babajani A, Kasravi M, Ahmadi A, Shariatzadeh S, Bahrami S, Niknejad H (2023) Angiogenesis and re-endothelialization in decellularized scaffolds: recent advances and current challenges in tissue engineering. Front Bioeng Biotechnol 11:1103727. https://doi.org/10.3389/fbioe.2023.1103727

Comments (0)

No login
gif