Ambrosini A, de Souza R, Passaglia LMP (2016) Ecological role of bacterial inoculants and their potential impact on soil microbial diversity. Plant Soil 400:193–207. https://doi.org/10.1007/s11104-015-2727-7
Antoniou A, Tsolakidou MD, Stringlis IA, Pantelides IS (2017) Rhizosphere microbiome recruited from a suppressive compost improves plant fitness and increases protection against vascular wilt pathogens of tomato. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.02022
Barka EA, Vatsa P, Sanchez L et al (2016) Correction for Barka et al., Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev 80:1–43. https://doi.org/10.1128/mmbr.00044-16
Besset-Manzoni Y, Rieusset L, Joly P et al (2018) Exploiting rhizosphere microbial cooperation for developing sustainable agriculture strategies. Environ Sci Pollut Res 25:29953–29970. https://doi.org/10.1007/s11356-017-1152-2
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9
Article CAS PubMed PubMed Central Google Scholar
Breedt G, Labuschagne N, Coutinho TA (2017) Seed treatment with selected plant growth-promoting rhizobacteria increases maize yield in the field. Ann Appl Biol 171:229–236. https://doi.org/10.1111/aab.12366
Bull AT, Stach JEM, Ward AC, Goodfellow M (2005) Marine Actinobacteria: perspectives, challenges, future directions. Antonie Van Leeuwenhoek 87:65–79. https://doi.org/10.1007/s10482-004-6562-8
Castulo-Rubio DY, Alejandre-Ramírez NA, Orozco-Mosqueda MC et al (2015) Volatile organic compounds produced by the Rhizobacterium Arthrobacter agilis UMCV2 modulate Sorghum bicolor (strategy II plant) morphogenesis and SbFRO1 transcription in vitro. J Plant Growth Regul 34:611–623. https://doi.org/10.1007/s00344-015-9495-8
Coniglio A, Larama G, Molina R et al (2022) Modulation of maize rhizosphere microbiota composition by inoculation with Azospirillum argentinense Az39 (formerly A. brasilense Az39). J Soil Sci Plant Nutr 22:3553–3567. https://doi.org/10.1007/s42729-022-00909-6
Dedysh SN, Sinninghe Damsté JS (2018) Acidobacteria. In: Encyclopedia of Life Sciences. John Wiley & Sons, Ltd, pp 1–10
Di Salvo LP, Cellucci GC, Carlino ME, García de Salamone IE (2018) Plant growth-promoting rhizobacteria inoculation and nitrogen fertilization increase maize (Zea mays L.) grain yield and modified rhizosphere microbial communities. Appl Soil Ecol 126:113–120. https://doi.org/10.1016/j.apsoil.2018.02.010
Dias MP, Bastos MS, Xavier VB et al (2017) Plant growth and resistance promoted by Streptomyces spp. in tomato. Plant Physiol Biochem 118:479–493. https://doi.org/10.1016/j.plaphy.2017.07.017
Article CAS PubMed Google Scholar
dos Santos RM, Diaz PAE, Lobo LLB, Rigobelo EC (2020) Use of plant growth-promoting rhizobacteria in maize and sugarcane: characteristics and applications. Front Sustain Food Syst 4:1–15. https://doi.org/10.3389/fsufs.2020.00136
dos Santos IB, de Pereira AP, A, de Souza AJ et al (2022) Selection and characterization of Burkholderia spp. for their plant-growth promoting effects and influence on maize seed germination. Front Soil Sci 1:1–10. https://doi.org/10.3389/fsoil.2021.805094
Dube JP, Valverde A, Steyn JM, Cowan DA, Van der Waals JE (2019) Differences in bacterial diversity, composition and function due to long-term agriculture in soils in the eastern free state of South Africa. Diversity 11:61. https://doi.org/10.3390/d11040061
Egamberdieva D, Jabborova D, Berg G (2016) Synergistic interactions between Bradyrhizobium japonicum and the endophyte Stenotrophomonas rhizophila and their effects on growth, and nodulation of soybean under salt stress. Plant Soil 405:35–45. https://doi.org/10.1007/s11104-015-2661-8
Erenstein O, Jaleta M, Sonder K et al (2022) Global maize production, consumption and trade: trends and R&D implications. Food Secur 14:1295–1319. https://doi.org/10.1007/s12571-022-01288-7
Ferrarezi JA, de Carvalho-Estrada P, A, Batista BD et al (2022) Effects of inoculation with plant growth-promoting rhizobacteria from the Brazilian Amazon on the bacterial community associated with maize in field. Appl Soil Ecol 170
Gonzalez-Pimentel JL, Dominguez-Moñino I, Jurado V et al (2022) The rare Actinobacterium Crossiella sp. is a potential source of new bioactive compounds with activity against bacteria and fungi. Microorganisms 10:1575. https://doi.org/10.3390/microorganisms10081575
He D, Wan W (2022) Distribution of culturable phosphate-solubilizing bacteria in soil aggregates and their potential for phosphorus acquisition. Microbiology Spectrum 10:e00290-e322. https://doi.org/10.1128/spectrum.00290-22
Article CAS PubMed PubMed Central Google Scholar
Heo AY, Koo YM, Choi HW (2022) Biological control activity of plant growth promoting rhizobacteria Burkholderia contaminans AY001 against tomato Fusarium wilt and bacterial speck diseases. Biology 11:619. https://doi.org/10.3390/biology11040619
Article CAS PubMed PubMed Central Google Scholar
Hernández-Fernández G, Galán B, Carmona M et al (2022) Transcriptional response of the xerotolerant Arthrobacter sp. Helios strain to PEG-induced drought stress. Front Microbiol 13:1–20. https://doi.org/10.3389/fmicb.2022.1009068
Hernández-León R, Rojas-Solís D, Contreras-Pérez M et al (2015) Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biol Control 81:83–92. https://doi.org/10.1016/j.biocontrol.2014.11.011
Jiang Z, Shao Q, Chu Y et al (2023) Mitigation of atrazine-induced oxidative stress on soybean seedlings after co-inoculation with atrazine-degrading bacterium Arthrobacter sp. DNS10 and inorganic phosphorus-solubilizing bacterium Enterobacter sp. P1. Environ Sci Pollut Res 30:30048–30061. https://doi.org/10.1007/s11356-022-24070-w
Jiménez JA, Novinscak A, Filion M (2020) Inoculation with the plant-growth-promoting Rhizobacterium Pseudomonas fluorescens LBUM677 impacts the rhizosphere microbiome of three oilseed crops. Front Microbiol 11:1–15. https://doi.org/10.3389/fmicb.2020.569366
Kalam S, Das SN, Basu A, Podile AR (2017) Population densities of indigenous Acidobacteria change in the presence of plant growth promoting rhizobacteria (PGPR) in rhizosphere. J Basic Microbiol 57:376–385. https://doi.org/10.1002/jobm.201600588
Article CAS PubMed Google Scholar
Khatoon Z, Huang S, Farooq MA et al (2022) Role of plant growth-promoting bacteria (PGPB) in abiotic stress management. Mitig Plant Abiotic Stress by Microorg 257–272. https://doi.org/10.1016/b978-0-323-90568-8.00012-2
Kielak AM, Cipriano MAP, Kuramae EE (2016) Acidobacteria strains from subdivision 1 act as plant growth-promoting bacteria. Arch Microbiol 198:987–993. https://doi.org/10.1007/s00203-016-1260-2
Article CAS PubMed PubMed Central Google Scholar
Kuypers MMM, Marchant HK, Kartal B (2018) The microbial nitrogen-cycling network. Nat Rev Microbiol 16:263–276. https://doi.org/10.1038/nrmicro.2018.9
Article CAS PubMed Google Scholar
Kwak M-J, Kong HG, Choi K et al (2018) Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat Biotechnol 36:1100–1109. https://doi.org/10.1038/nbt.4232
Lahsini AI, Sallami A, Ait-Ouakrim EH et al (2022) Isolation and molecular identification of an indigenous abiotic stress-tolerant plant growth-promoting rhizobacteria from the rhizosphere of the olive tree in southern Morocco. Rhizosphere. https://doi.org/10.1146/annurev-micro-102215-095748
Lewin GR, Carlos C, Chevrette MG et al (2016) Evolution and ecology of Actinobacteria and their bioenergy applications. Annu Rev Microbiol 70:235–254. https://doi.org/10.1146/annurev-micro-102215-095748
Article CAS PubMed PubMed Central Google Scholar
Li X, Rui J, Mao Y et al (2014) Dynamics of the bacterial community structure in the rhizosphere of a maize cultivar. Soil Biol Biochem 68:392–401. https://doi.org/10.1016/j.soilbio.2013.10.017
Li Z, Henawy AR, Halema AA et al (2022) A wild rice Rhizobacterium Burkholderia cepacia BRDJ enhances nitrogen use efficiency in rice. Int J Mol Sci 23:10769. https://doi.org/10.3390/ijms231810769
Article CAS PubMed PubMed Central Google Scholar
Lopes LD, Wang P, Futrell SL, Schachtman DP (2022) Sugars and jasmonic acid concentration in root exudates affect maize rhizosphere bacterial communities. Appl Environ Microbiol 88:e00971-e1022. https://doi.org/10.1128/aem.00971-22
Comments (0)