Rhizobacterial community and growth-promotion trait characteristics of Zea mays L. inoculated with Pseudomonas fluorescens UM270 in three different soils

Ambrosini A, de Souza R, Passaglia LMP (2016) Ecological role of bacterial inoculants and their potential impact on soil microbial diversity. Plant Soil 400:193–207. https://doi.org/10.1007/s11104-015-2727-7

Article  CAS  Google Scholar 

Antoniou A, Tsolakidou MD, Stringlis IA, Pantelides IS (2017) Rhizosphere microbiome recruited from a suppressive compost improves plant fitness and increases protection against vascular wilt pathogens of tomato. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.02022

Barka EA, Vatsa P, Sanchez L et al (2016) Correction for Barka et al., Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev 80:1–43. https://doi.org/10.1128/mmbr.00044-16

Article  PubMed  Google Scholar 

Besset-Manzoni Y, Rieusset L, Joly P et al (2018) Exploiting rhizosphere microbial cooperation for developing sustainable agriculture strategies. Environ Sci Pollut Res 25:29953–29970. https://doi.org/10.1007/s11356-017-1152-2

Article  Google Scholar 

Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Breedt G, Labuschagne N, Coutinho TA (2017) Seed treatment with selected plant growth-promoting rhizobacteria increases maize yield in the field. Ann Appl Biol 171:229–236. https://doi.org/10.1111/aab.12366

Article  CAS  Google Scholar 

Bull AT, Stach JEM, Ward AC, Goodfellow M (2005) Marine Actinobacteria: perspectives, challenges, future directions. Antonie Van Leeuwenhoek 87:65–79. https://doi.org/10.1007/s10482-004-6562-8

Article  PubMed  Google Scholar 

Castulo-Rubio DY, Alejandre-Ramírez NA, Orozco-Mosqueda MC et al (2015) Volatile organic compounds produced by the Rhizobacterium Arthrobacter agilis UMCV2 modulate Sorghum bicolor (strategy II plant) morphogenesis and SbFRO1 transcription in vitro. J Plant Growth Regul 34:611–623. https://doi.org/10.1007/s00344-015-9495-8

Article  CAS  Google Scholar 

Coniglio A, Larama G, Molina R et al (2022) Modulation of maize rhizosphere microbiota composition by inoculation with Azospirillum argentinense Az39 (formerly A. brasilense Az39). J Soil Sci Plant Nutr 22:3553–3567. https://doi.org/10.1007/s42729-022-00909-6

Article  CAS  Google Scholar 

Dedysh SN, Sinninghe Damsté JS (2018) Acidobacteria. In: Encyclopedia of Life Sciences. John Wiley & Sons, Ltd, pp 1–10

Di Salvo LP, Cellucci GC, Carlino ME, García de Salamone IE (2018) Plant growth-promoting rhizobacteria inoculation and nitrogen fertilization increase maize (Zea mays L.) grain yield and modified rhizosphere microbial communities. Appl Soil Ecol 126:113–120. https://doi.org/10.1016/j.apsoil.2018.02.010

Article  Google Scholar 

Dias MP, Bastos MS, Xavier VB et al (2017) Plant growth and resistance promoted by Streptomyces spp. in tomato. Plant Physiol Biochem 118:479–493. https://doi.org/10.1016/j.plaphy.2017.07.017

Article  CAS  PubMed  Google Scholar 

dos Santos RM, Diaz PAE, Lobo LLB, Rigobelo EC (2020) Use of plant growth-promoting rhizobacteria in maize and sugarcane: characteristics and applications. Front Sustain Food Syst 4:1–15. https://doi.org/10.3389/fsufs.2020.00136

Article  Google Scholar 

dos Santos IB, de Pereira AP, A, de Souza AJ et al (2022) Selection and characterization of Burkholderia spp. for their plant-growth promoting effects and influence on maize seed germination. Front Soil Sci 1:1–10. https://doi.org/10.3389/fsoil.2021.805094

Article  Google Scholar 

Dube JP, Valverde A, Steyn JM, Cowan DA, Van der Waals JE (2019) Differences in bacterial diversity, composition and function due to long-term agriculture in soils in the eastern free state of South Africa. Diversity 11:61. https://doi.org/10.3390/d11040061

Article  CAS  Google Scholar 

Egamberdieva D, Jabborova D, Berg G (2016) Synergistic interactions between Bradyrhizobium japonicum and the endophyte Stenotrophomonas rhizophila and their effects on growth, and nodulation of soybean under salt stress. Plant Soil 405:35–45. https://doi.org/10.1007/s11104-015-2661-8

Article  CAS  Google Scholar 

Erenstein O, Jaleta M, Sonder K et al (2022) Global maize production, consumption and trade: trends and R&D implications. Food Secur 14:1295–1319. https://doi.org/10.1007/s12571-022-01288-7

Article  Google Scholar 

Ferrarezi JA, de Carvalho-Estrada P, A, Batista BD et al (2022) Effects of inoculation with plant growth-promoting rhizobacteria from the Brazilian Amazon on the bacterial community associated with maize in field. Appl Soil Ecol 170

Gonzalez-Pimentel JL, Dominguez-Moñino I, Jurado V et al (2022) The rare Actinobacterium Crossiella sp. is a potential source of new bioactive compounds with activity against bacteria and fungi. Microorganisms 10:1575. https://doi.org/10.3390/microorganisms10081575

He D, Wan W (2022) Distribution of culturable phosphate-solubilizing bacteria in soil aggregates and their potential for phosphorus acquisition. Microbiology Spectrum 10:e00290-e322. https://doi.org/10.1128/spectrum.00290-22

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heo AY, Koo YM, Choi HW (2022) Biological control activity of plant growth promoting rhizobacteria Burkholderia contaminans AY001 against tomato Fusarium wilt and bacterial speck diseases. Biology 11:619. https://doi.org/10.3390/biology11040619

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hernández-Fernández G, Galán B, Carmona M et al (2022) Transcriptional response of the xerotolerant Arthrobacter sp. Helios strain to PEG-induced drought stress. Front Microbiol 13:1–20. https://doi.org/10.3389/fmicb.2022.1009068

Article  Google Scholar 

Hernández-León R, Rojas-Solís D, Contreras-Pérez M et al (2015) Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biol Control 81:83–92. https://doi.org/10.1016/j.biocontrol.2014.11.011

Article  CAS  Google Scholar 

Jiang Z, Shao Q, Chu Y et al (2023) Mitigation of atrazine-induced oxidative stress on soybean seedlings after co-inoculation with atrazine-degrading bacterium Arthrobacter sp. DNS10 and inorganic phosphorus-solubilizing bacterium Enterobacter sp. P1. Environ Sci Pollut Res 30:30048–30061. https://doi.org/10.1007/s11356-022-24070-w

Article  CAS  Google Scholar 

Jiménez JA, Novinscak A, Filion M (2020) Inoculation with the plant-growth-promoting Rhizobacterium Pseudomonas fluorescens LBUM677 impacts the rhizosphere microbiome of three oilseed crops. Front Microbiol 11:1–15. https://doi.org/10.3389/fmicb.2020.569366

Article  Google Scholar 

Kalam S, Das SN, Basu A, Podile AR (2017) Population densities of indigenous Acidobacteria change in the presence of plant growth promoting rhizobacteria (PGPR) in rhizosphere. J Basic Microbiol 57:376–385. https://doi.org/10.1002/jobm.201600588

Article  CAS  PubMed  Google Scholar 

Khatoon Z, Huang S, Farooq MA et al (2022) Role of plant growth-promoting bacteria (PGPB) in abiotic stress management. Mitig Plant Abiotic Stress by Microorg 257–272. https://doi.org/10.1016/b978-0-323-90568-8.00012-2

Kielak AM, Cipriano MAP, Kuramae EE (2016) Acidobacteria strains from subdivision 1 act as plant growth-promoting bacteria. Arch Microbiol 198:987–993. https://doi.org/10.1007/s00203-016-1260-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuypers MMM, Marchant HK, Kartal B (2018) The microbial nitrogen-cycling network. Nat Rev Microbiol 16:263–276. https://doi.org/10.1038/nrmicro.2018.9

Article  CAS  PubMed  Google Scholar 

Kwak M-J, Kong HG, Choi K et al (2018) Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat Biotechnol 36:1100–1109. https://doi.org/10.1038/nbt.4232

Article  CAS  Google Scholar 

Lahsini AI, Sallami A, Ait-Ouakrim EH et al (2022) Isolation and molecular identification of an indigenous abiotic stress-tolerant plant growth-promoting rhizobacteria from the rhizosphere of the olive tree in southern Morocco. Rhizosphere. https://doi.org/10.1146/annurev-micro-102215-095748

Lewin GR, Carlos C, Chevrette MG et al (2016) Evolution and ecology of Actinobacteria and their bioenergy applications. Annu Rev Microbiol 70:235–254. https://doi.org/10.1146/annurev-micro-102215-095748

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li X, Rui J, Mao Y et al (2014) Dynamics of the bacterial community structure in the rhizosphere of a maize cultivar. Soil Biol Biochem 68:392–401. https://doi.org/10.1016/j.soilbio.2013.10.017

Article  CAS  Google Scholar 

Li Z, Henawy AR, Halema AA et al (2022) A wild rice Rhizobacterium Burkholderia cepacia BRDJ enhances nitrogen use efficiency in rice. Int J Mol Sci 23:10769. https://doi.org/10.3390/ijms231810769

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lopes LD, Wang P, Futrell SL, Schachtman DP (2022) Sugars and jasmonic acid concentration in root exudates affect maize rhizosphere bacterial communities. Appl Environ Microbiol 88:e00971-e1022. https://doi.org/10.1128/aem.00971-22

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif