Alzaeemi SA, Noman EA, Al-shaibani MM, Al-Gheethi A, Mohamed RMSR, Almoheer R, Seif M, Tay KG, Zin NM, El Enshasy HA (2023) Improvement of L-asparaginase, an anticancer agent of Aspergillus arenarioides EAN603 in submerged fermentation using a radial basis function neural network with a specific genetic algorithm (RBFNN-GA). Fermentation 9:200. https://doi.org/10.3390/fermentation9030200
Andrade KCR, Fernandes RA, Pinho DB, de Freitas MM, Filho EXF, Pessoa A, Silva JI, Magalhães PO (2021) Sequencing and characterization of an L-asparaginase gene from a new species of Penicillium section Citrina isolated from Cerrado. Sci Rep 11:17861. https://doi.org/10.1038/s41598-021-97316-1
Article CAS PubMed PubMed Central Google Scholar
Aronson JK (2016) Asparaginase. In: Aronson JK (ed) Meyler’s side effects of drugs, sixteenth. elsevier, Oxford, pp 726–727. https://doi.org/10.1016/B978-0-444-53717-1.00333-4
Baez A, Majdalani N, Shiloach J (2014) Production of recombinant protein by a novel oxygen-induced system in Escherichia coli. Microb Cell Factories 13:1–7. https://doi.org/10.1186/1475-2859-13-50
Barros T, Brumano L, Freitas M, Pessoa A, Parachin N, Magalhães PO (2020) Development of processes for recombinant L-asparaginase II production by Escherichia coli Bl21 (De3): From shaker to bioreactors. Pharmaceutics 13:14. https://doi.org/10.3390/pharmaceutics13010014
Article CAS PubMed PubMed Central Google Scholar
Barton RR (2013) Response surface methodology. In: Gass SI, Fu MC (eds) Encyclopedia of operations research and management science. Springer, US, Boston, MA, pp 1307–1313. https://doi.org/10.1007/978-1-4419-1153-7_1143
Behravan A, Hashemi A (2021) RSM-based model to predict optimum fermentation conditions for soluble expression of the antibody fragment derived from 4D5MOC-B humanized Mab in SHuffle™ T7 E. coli. Iran J Pharm Res 20:254. https://doi.org/10.22037/ijpr.2020.114377.14822
Article CAS PubMed PubMed Central Google Scholar
Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977. https://doi.org/10.1016/j.talanta.2008.05.019
Article CAS PubMed Google Scholar
Biasoto HP, Hebeda CB, Farsky SHP, Pessoa A, Costa-Silva TA, Monteiro G (2023) Extracellular expression of Saccharomyces cerevisiae’s L-asparaginase II in Pichia pastoris results in novel enzyme with better parameters. Prep Biochem Biotechnol 53:511–522. https://doi.org/10.1080/10826068.2022.2111582
Article CAS PubMed Google Scholar
Biener R, Steinkämper A, Hofmann J (2010) Calorimetric control for high cell density cultivation of a recombinant Escherichia coli strain. J Biotech 146:45–53. https://doi.org/10.1016/j.jbiotec.2010.01.004
Box GEP, Wilson KB (1992) On the experimental attainment of optimum conditions. In: Kotz S, Johnson NL (eds) Breakthroughs in statistics: methodology and distribution. Springer, New York, New York, NY, pp 270–310. https://doi.org/10.1007/978-1-4612-4380-9_23
Castro D, Marques ASC, Almeida MR, de Paiva GB, Bento HBS, Pedrolli DB, Freire MG, Tavares APM, Santos-Ebinuma VC (2021) L-asparaginase production review: bioprocess design and biochemical characteristics. Appl Microbiol Biotechnol 105:4515–4534. https://doi.org/10.1007/s00253-021-11359-y
Article CAS PubMed Google Scholar
Chityala S, Venkata Dasu V, Ahmad J, Prakasham RS (2015) High yield expression of novel glutaminase free l-asparaginase II of Pectobacterium carotovorum MTCC 1428 in Bacillus subtilis WB800N. Bioprocess Biosyst Eng 38:2271–2284. https://doi.org/10.1007/s00449-015-1464-x
Article CAS PubMed Google Scholar
Costa IM, Schultz L, de Araujo Bianchi Pedra B, Leite MS, Farsky SH, de Oliveira MA, Pessoa A, Monteiro G, (2016) Recombinant L-asparaginase 1 from Saccharomyces cerevisiae: an allosteric enzyme with antineoplastic activity. Sci Rep 6:36239. https://doi.org/10.1038/srep36239
Article CAS PubMed PubMed Central Google Scholar
El-Naggar NE-A, El-Shweihy NM (2020) Bioprocess development for L-asparaginase production by Streptomyces rochei, purification and in-vitro efficacy against various human carcinoma cell lines. Sci Rep 10:7942. https://doi.org/10.1038/s41598-020-64052-x
Article CAS PubMed PubMed Central Google Scholar
Ferrara MA, Severino NM, Mansure JJ, Martins AS, Oliveira EM, Siani AC, Pereira N Jr, Torres FA, Bon EP (2006) Asparaginase production by a recombinant Pichia pastoris strain harbouring Saccharomyces cerevisiae ASP3 gene. Enzyme Microb Technol 39:1457–1463. https://doi.org/10.1016/J.ENZMICTEC.2006.03.036
Ferreira SC, Bruns R, Ferreira HS, Matos GD, David J, Brandão G, da Silva EP, Portugal L, Dos Reis P, Souza A (2007) Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta 597:179–186. https://doi.org/10.1016/j.aca.2007.07.011
Article CAS PubMed Google Scholar
Francis DM, Page R (2010) Strategies to optimize protein expression in E. coli. Curr Protoc Protein Sci 61(5):24 21-25.24. 29. https://doi.org/10.1002/0471140864.ps0524s61
Gilmour SG (2006) Response surface designs for experiments in bioprocessing. Biometrics 62:323–331. https://doi.org/10.1111/j.1541-0420.2005.00444.x
Gomes L, Monteiro G, Mergulhão F (2020) The impact of IPTG induction on plasmid stability and heterologous protein expression by Escherichia coli biofilms. Int J Mol Sci 21:576. https://doi.org/10.3390/ijms21020576
Article CAS PubMed PubMed Central Google Scholar
Gutiérrez-González M, Farías C, Tello S, Pérez-Etcheverry D, Romero A, Zúñiga R, Ribeiro CH, Lorenzo-Ferreiro C, Molina MC (2019) Optimization of culture conditions for the expression of three different insoluble proteins in Escherichia coli. Sci Rep 9:16850. https://doi.org/10.1038/s41598-019-53200-7
Article CAS PubMed PubMed Central Google Scholar
Hanrahan G, Lu K (2006) Application of factorial and response surface methodology in modern experimental design and optimization. Crit Rev Anal Chem 36:141–151. https://doi.org/10.1080/10408340600969478
Hien Trang NT, Thanh Hoang L, Tuyen DT (2020) Optimization of L-asparaginase production from Escherichia coli using response surface methodology. Vietnam J Biotechnol 16:767–775. https://doi.org/10.15625/1811-4989/16/4/10861
Khushoo A, Pal Y, Singh BN, Mukherjee K (2004) Extracellular expression and single step purification of recombinant Escherichia coli L-asparaginase II. Protein Expr Purif 38:29–36. https://doi.org/10.1016/J.PEP.2004.07.009
Article CAS PubMed Google Scholar
Kim S-K, Min W-K, Park Y-C, Seo J-H (2015) Application of repeated aspartate tags to improving extracellular production of Escherichia coli L-asparaginase isozyme II. Enzyme Microb Technol 79:49–54. https://doi.org/10.1016/j.enzmictec.2015.06.017
Article CAS PubMed Google Scholar
Kumar S, Venkata Dasu V, Pakshirajan K (2011) Purification and characterization of glutaminase-free L-asparaginase from Pectobacterium carotovorum MTCC 1428. Bioresour Technol 102:2077–2082. https://doi.org/10.1016/j.biortech.2010.07.114
Article CAS PubMed Google Scholar
Kusuma SAF, Parwati I, Rostinawati T, Yusuf M, Fadhlillah M, Ahyudanari RR, Rukayadi Y, Subroto T (2019) Optimization of culture conditions for Mpt64 synthetic gene expression in Escherichia coli BL21 (DE3) using surface response methodology. Heliyon 5:e02741. https://doi.org/10.1016/j.heliyon.2019.e02741
Article PubMed PubMed Central Google Scholar
Lopes AM, Oliveira-Nascimento Ld, Ribeiro A, Tairum CA Jr, Breyer CA, Oliveira MAd, Monteiro G, Souza-Motta CMd, Magalhães PdO, Avendaño JGF (2017) Therapeutic L-asparaginase: upstream, downstream and beyond. Crit Rev Biotechnol 37:82–99. https://doi.org/10.3109/07388551.2015.1120705
Article CAS PubMed Google Scholar
Lubkowski J, Wlodawer A (2021) Structu
Comments (0)