Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens: BioMed Research International, 2016;2475067.
Aslam B, Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, Nisar MA, Alvi RF, Aslam MA, Qamar MU, Salamat MKF. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018;11:1645–58.
Article CAS PubMed PubMed Central Google Scholar
Huan Y, Kong Q, Mou H, Yi H. Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol. 2020;11:582779.
Article PubMed PubMed Central Google Scholar
Hicks RP, Bhonsle JB, Venugopal D, Koser BW, Magill AJ. De novo design of selective antibiotic peptides by incorporation of unnatural amino acids. J Med Chem. 2007;50:3026–36.
Article CAS PubMed Google Scholar
Gentilucci L, De Marco R, Cerisoli L. Chemical modifications designed to improve peptide stability: incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. Curr Pharm Des. 2010;16:3185–203.
Article CAS PubMed Google Scholar
Cabrele C, Martinek TA, Reiser O, Berlicki Ł. Peptides containing β-amino acid patterns: challenges and successes in medicinal chemistry. J Med Chem. 2014;57:9718–39.
Article CAS PubMed Google Scholar
Wani NA, Singh G, Shankar S, Sharma A, Katoch M, Rai R. Short hybrid peptides incorporating β-and γ-amino acids as antimicrobial agents. Peptides. 2017;97:46–53.
Article CAS PubMed Google Scholar
Shankar SS, Benke SN, Nagendra N, Srivastava PL, Thulasiram HV, Gopi HN. Self-assembly to function: design, synthesis, and broad spectrum antimicrobial properties of short hybrid E-vinylogous lipopeptides. J Med Chem. 2013;56:8468–74.
Article CAS PubMed Google Scholar
Benke SN, Thulasiram HV, Gopi HN. Potent antimicrobial activity of lipidated short α, γ‐hybrid peptides. ChemMedChem. 2017;12:1610–5.
Article CAS PubMed Google Scholar
Aguilar M-I, Purcell AW, Devi R, Lew R, Rossjohn J, Smith AI, Perlmutter P. β-Amino acid-containing hybrid peptides—new opportunities in peptidomimetics. Org Biomol Chem. 2007;5:2884–90.
Article CAS PubMed Google Scholar
Schmitt MA, Weisblum B, Gellman SH. Interplay among folding, sequence, and lipophilicity in the antibacterial and hemolytic activities of α/β-peptides. J Am Chem Soc. 2007;129:417–28.
Article CAS PubMed Google Scholar
Chowdhary R, Mubarak MM, Kantroo HA, ur Rahim J, Malik A, Sarkar AR, Bashir G, Ahmad Z, Rai R. Synthesis, characterization, and antimicrobial activity of ultra-short cationic β-peptides. ACS Infect Dis. 2023;9:1437–48.
Article CAS PubMed Google Scholar
Schmitt MA, Weisblum B, Gellman SH. Unexpected relationships between structure and function in α, β-peptides: antimicrobial foldamers with heterogeneous backbones. J Am Chem Soc. 2004;126:6848–9.
Article CAS PubMed Google Scholar
Vestergaard M, Skive B, Domraceva I, Ingmer H, Franzyk H. Peptide/β-peptoid hybrids with activity against vancomycin-resistant enterococci: influence of hydrophobicity and structural features on antibacterial and hemolytic properties. Int J Mol Sci. 2021;22:5617.
Article CAS PubMed PubMed Central Google Scholar
Ur Rahim J, Singh G, Shankar S, Katoch M, Rai R. Tetrahydropiperic acid (THPA) conjugated cationic hybrid dipeptides as antimicrobial agents. J Antibiot. 2021;74:480–3.
Shankar S, Jyothi D, Rahim JU, Pal PC, Singh UP, Rai R. Conformation of achiral α/β hybrid peptides containing glycine and 1‐aminocyclohexaneacetic acid: ChemistrySelect. 2022;7:e202104453.
Lehto T, Vasconcelos L, Margus H, Figueroa R, Pooga M, Hällbrink M, Langel U. Saturated fatty acid analogues of cell-penetrating peptide PepFect14: role of fatty acid modification in complexation and delivery of splice-correcting oligonucleotides. Bioconjugate Chem. 2017;28:782–92.
Violette A, Fournel S, Lamour K, Chaloin O, Frisch B, Briand JP, Guichard G. Mimicking helical antibacterial peptides with nonpeptidic folding oligomers. Chem Biol. 2006;13:531–8.
Article CAS PubMed Google Scholar
Kavaliauskas P, Acevedo W, Garcia A, Naing E, Grybaite B, Sapijanskaite-Banevic B, Grigaleviciute R, Petraitiene R, Mickevicius V, Petraitis V. Exploring the potential of bis (thiazol-5-yl) phenylmethane derivatives as novel candidates against genetically defined multidrug-resistant Staphylococcus aureus. Plos one. 2024;19:e0300380.
Article CAS PubMed PubMed Central Google Scholar
Oliveira W, Silva PMS, Silva RCS, Silva GMM, Machado G, Coelho LCBB, Correia MTS. Staphylococcus aureus and Staphylococcus epidermidis infections on implants. J Hospital Infect. 2018;98:111–7.
Bhattacharya M, Wozniak DJ, Stoodley P, Hall-Stoodley L. Prevention and treatment of Staphylococcus aureus biofilms. Expert Rev Anti Infect Ther. 2015;13:1499–516.
Article CAS PubMed PubMed Central Google Scholar
Lister JL, Horswill AR. Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front Cell Infect Microbiol. 2014;4:178.
Comments (0)