Mariappan V, Vellasamy KM, Barathan M, Girija ASS, Shankar EM, Vadivelu J (2021) Hijacking of the host’s immune surveillance radars by Burkholderia pseudomallei. Front Immunol 12:718719. https://doi.org/10.3389/fimmu.2021.718719
Article CAS PubMed PubMed Central Google Scholar
Currie BJ, Meumann EM, Kaestli M (2023) The expanding global footprint of Burkholderia pseudomallei and melioidosis. Am J Trop Med Hyg 108(6):1081–1083. https://doi.org/10.4269/ajtmh.23-0223
Article PubMed PubMed Central Google Scholar
Bzdyl NM, Moran CL, Bendo J, Sarkar-Tyson M (2022) Pathogenicity and virulence of Burkholderia pseudomallei. Virulence 13(1):1945–1965. https://doi.org/10.1080/21505594.2022.2139063
Article CAS PubMed PubMed Central Google Scholar
Currie BJ (2022) Melioidosis and Burkholderia pseudomallei: progress in epidemiology, diagnosis, treatment and vaccination. Curr Opin Infect Dis 35(6):517–523. https://doi.org/10.1097/qco.0000000000000869
Limmathurotsakul D, Golding N, Dance DA, Messina JP, Pigott DM, Moyes CL et al (2016) Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nat Microbiol 1:15008. https://doi.org/10.1038/nmicrobiol.2015.8
Article CAS PubMed PubMed Central Google Scholar
Greenberg EP, Chandler JR, Seyedsayamdost MR (2020) The chemistry and biology of Bactobolin: a 10-year collaboration with natural product chemist Extraordinaire Jon Clardy. J Nat Prod 83(3):738–743. https://doi.org/10.1021/acs.jnatprod.9b01237
Article CAS PubMed PubMed Central Google Scholar
Godoy D, Randle G, Simpson AJ, Aanensen DM, Pitt TL, Kinoshita R et al (2003) Multilocus sequence typing and evolutionary relationships among the causative agents of melioidosis and glanders, Burkholderia pseudomallei and Burkholderia mallei. J Clin Microbiol 41(5):2068–2079. https://doi.org/10.1128/jcm.41.5.2068-2079.2003
Article CAS PubMed PubMed Central Google Scholar
Correia J, Gudiña EJ, Lazar Z, Janek T, Teixeira JA (2022) Cost-effective rhamnolipid production by Burkholderia thailandensis E264 using agro-industrial residues. Appl Microbiol Biotechnol 106(22):7477–7489. https://doi.org/10.1007/s00253-022-12225-1
Article CAS PubMed Google Scholar
Franco M, D’Haeseleer PM, Branda SS, Liou MJ, Haider Y, Segelke BW et al (2018) Proteomic profiling of Burkholderia thailandensis during host infection using bio-orthogonal noncanonical amino acid tagging (BONCAT). Front Cell Infect Microbiol 8:370. https://doi.org/10.3389/fcimb.2018.00370
Article CAS PubMed PubMed Central Google Scholar
Sauer K, Stoodley P, Goeres DM, Hall-Stoodley L, Burmølle M, Stewart PS et al (2022) The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat Rev Microbiol 20(10):608–620. https://doi.org/10.1038/s41579-022-00767-0
Article CAS PubMed PubMed Central Google Scholar
Wongkaewkhiaw S, Taweechaisupapong S, Anutrakunchai C, Nazmi K, Bolscher JGM, Wongratanacheewin S et al (2019) D-LL-31 in combination with ceftazidime synergistically enhances bactericidal activity and biofilm destruction in Burkholderia pseudomallei. Biofouling 35(5):573–584. https://doi.org/10.1080/08927014.2019.1632835
Article CAS PubMed Google Scholar
Tseng BS, Majerczyk CD, Passos da Silva D, Chandler JR, Greenberg EP, Parsek MR (2016) Quorum sensing influences Burkholderia thailandensis biofilm development and matrix production. J Bacteriol 198(19):2643–2650. https://doi.org/10.1128/JB.00047-16
Article CAS PubMed PubMed Central Google Scholar
Prazdnova EV, Gorovtsov AV, Vasilchenko NG, Kulikov MP, Statsenko VN, Bogdanova AA et al (2022) Quorum-sensing inhibition by gram-positive bacteria. Microorganisms 10(2):350. https://doi.org/10.3390/microorganisms10020350
Article CAS PubMed PubMed Central Google Scholar
Ulrich RL, Hines HB, Parthasarathy N, Jeddeloh JA (2004) Mutational analysis and biochemical characterization of the Burkholderia thailandensis DW503 quorum-sensing network. J Bacteriol 186(13):4350–4360. https://doi.org/10.1128/JB.186.13.4350-4360.2004
Article CAS PubMed PubMed Central Google Scholar
Duerkop BA, Varga J, Chandler JR, Peterson SB, Herman JP, Churchill ME et al (2009) Quorum-sensing control of antibiotic synthesis in Burkholderia thailandensis. J Bacteriol 191(12):3909–3918. https://doi.org/10.1128/jb.00200-09
Article CAS PubMed PubMed Central Google Scholar
Le Guillouzer S, Groleau MC, Deziel E (2017) The complex quorum sensing circuitry of Burkholderia thailandensis Ss both hierarchically and homeostatically organized. mBio 8(6):e01861–e01817. https://doi.org/10.1128/mBio.01861-17
Article PubMed PubMed Central Google Scholar
Hegazy WAH, Khayat MT, Ibrahim TS, Nassar MS, Bakhrebah MA, Abdulaal WH et al (2020) Repurposing anti-diabetic drugs to cripple quorum sensing in Pseudomonas aeruginosa. Microorganisms 8(9):1285. https://doi.org/10.3390/microorganisms8091285
Article CAS PubMed PubMed Central Google Scholar
Morales D, Micheva-Viteva S, Adikari S, Werner J, Wolinsky M, Hong-Geller E et al (2022) Targeting the bet-hedging strategy with an inhibitor of bacterial efflux capacity enhances antibiotic efficiency and ameliorates bacterial persistence in vitro. Microorganisms 10(10):1966
Article CAS PubMed PubMed Central Google Scholar
Xu K-Z, Xiang S-L, Wang Y-J, Wang B, Jia A-Q (2023) Methyl gallate isolated from partridge tea (Mallotus Oblongifolius (Miq.) Müll.Arg.) Inhibits the biofilms and virulence factors of Burkholderia thailandensis. J Ethnopharmacol 320:117422. https://doi.org/10.1016/j.jep.2023.117422
Article CAS PubMed Google Scholar
Memariani H, Memariani M (2023) Antibiofilm properties of cathelicidin LL-37: an in-depth review. World J Microbiol Biotechnol 39(4):99. https://doi.org/10.1007/s11274-023-03545-z
Article CAS PubMed Google Scholar
Glenn AW, Roberto FF, Ward TE (1992) Transformation of acidiphilium by electroporation and conjugation. Can J Microbiol 38(5):387–393. https://doi.org/10.1139/m92-065
Article CAS PubMed Google Scholar
Yin L, Zhang PP, Wang W, Tang S, Deng SM, Jia AQ (2022) 3-Phenylpropan-1-amine enhanced susceptibility of Serratia marcescens to ofloxacin by occluding quorum sensing. Microbiol Spectr 10(5):e0182922. https://doi.org/10.1128/spectrum.01829-22
Article CAS PubMed Google Scholar
Zhou JW, Ruan LY, Chen HJ, Luo HZ, Jiang H, Wang JS et al (2019) Inhibition of quorum sensing and virulence in Serratia marcescens by hordenine. J Agric Food Chem 67(3):784–795. https://doi.org/10.1021/acs.jafc.8b05922
Article CAS PubMed Google Scholar
Xu KZ, Tan XJ, Chang ZY, Li JJ, Jia AQ (2022) 2-tert-Butyl-1,4-benzoquinone, a food additive oxidant, reduces virulence factors of Chromobacterium violaceum. LWT-Food Sci Technol 163:113569. https://doi.org/10.1016/j.lwt.2022.113569
Paytubi S, Guirado P, Balsalobre C, Madrid C (2014) An improved and versatile methodology to quantify biofilms formed on solid surfaces and exposed to the air-liquid interphase. J Microbiol Methods 103:77–79. https://doi.org/10.1016/j.mimet.2014.05.020
Article CAS PubMed Google Scholar
Uchil PD, Nagarajan A, Kumar P (2017) β-Galactosidase. Cold Spring Harb Protoc 2017(10):774–779. https://doi.org/10.1101/pdb.top096198
Comments (0)