Integrating bulk and single-cell transcriptomics to elucidate the role and potential mechanisms of autophagy in aging tissue

C. López-Otín, M.A. Blasco, L. Partridge, M. Serrano, G. Kroemer, The hallmarks of aging. Cell 153(6), 1194–1217 (2013). https://doi.org/10.1016/j.cell.2013.05.039

Article  CAS  PubMed Central  PubMed  Google Scholar 

D.P. Goldman, D. Cutler, J.W. Rowe, P.C. Michaud, J. Sullivan, D. Peneva, S.J. Olshansky, Substantial health and economic returns from delayed aging may warrant a new focus for medical research. Health Aff. (Millwood) 32(10), 1698–1705 (2013). https://doi.org/10.1377/hlthaff.2013.0052

Article  Google Scholar 

N.S. Gasek, G.A. Kuchel, J.L. Kirkland, M. Xu, Strategies for targeting senescent cells in human disease. Nat. Aging 1(10), 870–879 (2021). https://doi.org/10.1038/s43587-021-00121-8

Article  PubMed Central  Google Scholar 

D.J. Baker, B.G. Childs, M. Durik, M.E. Wijers, C.J. Sieben, J. Zhong, R.A. Saltness, K.B. Jeganathan, G.C. Verzosa, A. Pezeshki, et al., Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530(7589), 184–189 (2016). https://doi.org/10.1038/nature16932

Article  CAS  PubMed Central  PubMed  Google Scholar 

Y. Zhu, T. Tchkonia, T. Pirtskhalava, A.C. Gower, H. Ding, N. Giorgadze, A.K. Palmer, Y. Ikeno, G.B. Hubbard, M. Lenburg, et al., The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14(4), 644–658 (2015). https://doi.org/10.1111/acel.12344

Article  CAS  PubMed Central  Google Scholar 

B.K. Kennedy, S.L. Berger, A. Brunet, J. Campisi, A.M. Cuervo, E.S. Epel, C. Franceschi, G.J. Lithgow, R.I. Morimoto, J.E. Pessin, et al., Geroscience: linking aging to chronic disease. Cell 159(4), 709–713 (2014). https://doi.org/10.1016/j.cell.2014.10.039

Article  CAS  PubMed Central  PubMed  Google Scholar 

J.L. Kirkland, T. Tchkonia, Cellular senescence: a translational perspective. EBioMedicine 21, 21–28 (2017). https://doi.org/10.1016/j.ebiom.2017.04.013

Article  PubMed Central  Google Scholar 

T. Tchkonia, Y. Zhu, J. van Deursen, J. Campisi, J.L. Kirkland, Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J. Clin. Invest. 123(3), 966–972 (2013). https://doi.org/10.1172/jci64098

Article  CAS  PubMed Central  Google Scholar 

J.L. Kirkland, T. Tchkonia, Clinical strategies and animal models for developing senolytic agents. Exp. Gerontol. 68, 19–25 (2015). https://doi.org/10.1016/j.exger.2014.10.012

Article  CAS  Google Scholar 

Z. Yang, D.J. Klionsky, Mammalian autophagy: core molecular machinery and signaling regulation. Curr. Opin. Cell Biol. 22(2), 124–131 (2010). https://doi.org/10.1016/j.ceb.2009.11.014

Article  CAS  Google Scholar 

Y. Zhong, Q.J. Wang, X. Li, Y. Yan, J.M. Backer, B.T. Chait, N. Heintz, Z. Yue, Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat. Cell. Biol. 11(4), 468–476 (2009). https://doi.org/10.1038/ncb1854

Article  CAS  PubMed Central  Google Scholar 

F. Huang, B.R. Wang, Y.G. Wang, Role of autophagy in tumorigenesis, metastasis, targeted therapy and drug resistance of hepatocellular carcinoma. World J. Gastroenterol. 24(41), 4643–4651 (2018). https://doi.org/10.3748/wjg.v24.i41.4643

Article  CAS  PubMed Central  Google Scholar 

J.L. Nieto-Torres, M. Hansen, Macroautophagy and aging: the impact of cellular recycling on health and longevity. Mol. Aspects Med. 82, 101020 (2021). https://doi.org/10.1016/j.mam.2021.101020

Article  CAS  PubMed Central  Google Scholar 

C. Kang, S.J. Elledge, How autophagy both activates and inhibits cellular senescence. Autophagy 12(5), 898–899 (2016). https://doi.org/10.1080/15548627.2015.1121361

Article  CAS  PubMed Central  Google Scholar 

M. Rovira, R. Sereda, D. Pladevall-Morera, V. Ramponi, I. Marin, M. Maus, J. Madrigal-Matute, A. Díaz, F. García, J. Muñoz, et al., The lysosomal proteome of senescent cells contributes to the senescence secretome. Aging Cell 21(10), e13707 (2022). https://doi.org/10.1111/acel.13707

Article  CAS  PubMed Central  Google Scholar 

J. Beauvarlet, P. Bensadoun, E. Darbo, G. Labrunie, B. Rousseau, E. Richard, I. Draskovic, A. Londono-Vallejo, J.W. Dupuy, R. Nath Das, et al., Modulation of the ATM/autophagy pathway by a G-quadruplex ligand tips the balance between senescence and apoptosis in cancer cells. Nucleic Acids Res. 47(6), 2739–2756 (2019). https://doi.org/10.1093/nar/gkz095

Article  CAS  PubMed Central  Google Scholar 

X. Hao, Y. Shiromoto, M. Sakurai, M. Towers, Q. Zhang, S. Wu, A. Havas, L. Wang, S. Berger, P.D. Adams, et al., ADAR1 downregulation by autophagy drives senescence independently of RNA editing by enhancing p16(INK4a) levels. Nat. Cell. Biol. 24(8), 1202–1210 (2022). https://doi.org/10.1038/s41556-022-00959-z

Article  CAS  PubMed Central  Google Scholar 

M. Abdellatif, P.P. Rainer, S. Sedej, G. Kroemer, Hallmarks of cardiovascular ageing. Nat. Rev. Cardiol. 20(11), 754–777 (2023). https://doi.org/10.1038/s41569-023-00881-3

Article  Google Scholar 

H. Zhu, Q. Li, T. Liao, X. Yin, Q. Chen, Z. Wang, M. Dai, L. Yi, S. Ge, C. Miao, et al., Metabolomic profiling of single enlarged lysosomes. Nat. Methods 18(7), 788–798 (2021). https://doi.org/10.1038/s41592-021-01182-8

Article  CAS  Google Scholar 

T. Eisenberg, H. Knauer, A. Schauer, S. Büttner, C. Ruckenstuhl, D. Carmona-Gutierrez, J. Ring, S. Schroeder, C. Magnes, L. Antonacci, et al., Induction of autophagy by spermidine promotes longevity. Nat. Cell. Biol. 11(11), 1305–1314 (2009). https://doi.org/10.1038/ncb1975

Article  CAS  Google Scholar 

T. Wilhelm, J. Byrne, R. Medina, E. Kolundžić, J. Geisinger, M. Hajduskova, B. Tursun, H. Richly, Neuronal inhibition of the autophagy nucleation complex extends life span in post-reproductive C. elegans. Genes Dev. 31(15), 1561–1572 (2017). https://doi.org/10.1101/gad.301648.117

Article  CAS  PubMed Central  Google Scholar 

Y. Dong, Y. Wu, G.L. Zhao, Z.Y. Ye, C.G. Xing, X.D. Yang, Inhibition of autophagy by 3-MA promotes hypoxia-induced apoptosis in human colorectal cancer cells. Eur. Rev. Med. Pharmacol. Sci. 23(3), 1047–1054 (2019). https://doi.org/10.26355/eurrev_201902_16992

Article  CAS  Google Scholar 

K. Yu, L. Xiang, S. Li, S. Wang, C. Chen, H. Mu, HIF1α promotes prostate cancer progression by increasing ATG5 expression. Anim. Cells Syst. (Seoul) 23(5), 326–334 (2019). https://doi.org/10.1080/19768354.2019.1658637

Article  CAS  Google Scholar 

N.M. Mazure, J. Pouysségur, Hypoxia-induced autophagy: cell death or cell survival? Curr. Opin. Cell Biol. 22(2), 177–180 (2010). https://doi.org/10.1016/j.ceb.2009.11.015

Article  CAS  Google Scholar 

F. Xu, Y. Hu, J. Gao, J. Wang, Y. Xie, F. Sun, L. Wang, A. Miyamoto, O. Xia, C. Zhang, HIF-1α/Malat1/miR-141 axis activates autophagy to increase proliferation, migration, and invasion in triple-negative breast cancer. Curr. Cancer Drug Targets 23(5), 363–378 (2023). https://doi.org/10.2174/1568009623666221228104833

Article  CAS  Google Scholar 

J. Vivian, A.A. Rao, F.A. Nothaft, C. Ketchum, J. Armstrong, A. Novak, J. Pfeil, J. Narkizian, A.D. Deran, A. Musselman-Brown, et al., Toil enables reproducible, open source, big biomedical data analyses. Nat. Biotechnol. 35(4), 314–316 (2017). https://doi.org/10.1038/nbt.3772

Article  CAS  PubMed Central  Google Scholar 

M. Luo, L. Ye, R. Chang, Y. Ye, Z. Zhang, C. Liu, S. Li, Y. Jing, H. Ruan, G. Zhang, et al., Multi-omics characterization of autophagy-related molecular features for therapeutic targeting of autophagy. Nat. Commun. 13(1), 6345 (2022). https://doi.org/10.1038/s41467-022-33946-x

Article  CAS  PubMed Central  Google Scholar 

G.L. Semenza, M.K. Nejfelt, S.M. Chi, S.E. Antonarakis, Hypoxia-inducible nuclear factors bind to an enhancer element located 3’ to the human erythropoietin gene. Proc. Natl. Acad. Sci. U. S. A. 88(13), 5680–5684 (1991). https://doi.org/10.1073/pnas.88.13.5680

Article  CAS  PubMed Central  Google Scholar 

G.L. Wang, B.H. Jiang, E.A. Rue, G.L. Semenza, Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. U. S. A. 92(12), 5510–5514 (1995). https://doi.org/10.1073/pnas.92.12.5510

Comments (0)

No login
gif