C. López-Otín, M.A. Blasco, L. Partridge, M. Serrano, G. Kroemer, The hallmarks of aging. Cell 153(6), 1194–1217 (2013). https://doi.org/10.1016/j.cell.2013.05.039
Article CAS PubMed Central PubMed Google Scholar
D.P. Goldman, D. Cutler, J.W. Rowe, P.C. Michaud, J. Sullivan, D. Peneva, S.J. Olshansky, Substantial health and economic returns from delayed aging may warrant a new focus for medical research. Health Aff. (Millwood) 32(10), 1698–1705 (2013). https://doi.org/10.1377/hlthaff.2013.0052
N.S. Gasek, G.A. Kuchel, J.L. Kirkland, M. Xu, Strategies for targeting senescent cells in human disease. Nat. Aging 1(10), 870–879 (2021). https://doi.org/10.1038/s43587-021-00121-8
Article PubMed Central Google Scholar
D.J. Baker, B.G. Childs, M. Durik, M.E. Wijers, C.J. Sieben, J. Zhong, R.A. Saltness, K.B. Jeganathan, G.C. Verzosa, A. Pezeshki, et al., Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530(7589), 184–189 (2016). https://doi.org/10.1038/nature16932
Article CAS PubMed Central PubMed Google Scholar
Y. Zhu, T. Tchkonia, T. Pirtskhalava, A.C. Gower, H. Ding, N. Giorgadze, A.K. Palmer, Y. Ikeno, G.B. Hubbard, M. Lenburg, et al., The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14(4), 644–658 (2015). https://doi.org/10.1111/acel.12344
Article CAS PubMed Central Google Scholar
B.K. Kennedy, S.L. Berger, A. Brunet, J. Campisi, A.M. Cuervo, E.S. Epel, C. Franceschi, G.J. Lithgow, R.I. Morimoto, J.E. Pessin, et al., Geroscience: linking aging to chronic disease. Cell 159(4), 709–713 (2014). https://doi.org/10.1016/j.cell.2014.10.039
Article CAS PubMed Central PubMed Google Scholar
J.L. Kirkland, T. Tchkonia, Cellular senescence: a translational perspective. EBioMedicine 21, 21–28 (2017). https://doi.org/10.1016/j.ebiom.2017.04.013
Article PubMed Central Google Scholar
T. Tchkonia, Y. Zhu, J. van Deursen, J. Campisi, J.L. Kirkland, Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J. Clin. Invest. 123(3), 966–972 (2013). https://doi.org/10.1172/jci64098
Article CAS PubMed Central Google Scholar
J.L. Kirkland, T. Tchkonia, Clinical strategies and animal models for developing senolytic agents. Exp. Gerontol. 68, 19–25 (2015). https://doi.org/10.1016/j.exger.2014.10.012
Z. Yang, D.J. Klionsky, Mammalian autophagy: core molecular machinery and signaling regulation. Curr. Opin. Cell Biol. 22(2), 124–131 (2010). https://doi.org/10.1016/j.ceb.2009.11.014
Y. Zhong, Q.J. Wang, X. Li, Y. Yan, J.M. Backer, B.T. Chait, N. Heintz, Z. Yue, Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat. Cell. Biol. 11(4), 468–476 (2009). https://doi.org/10.1038/ncb1854
Article CAS PubMed Central Google Scholar
F. Huang, B.R. Wang, Y.G. Wang, Role of autophagy in tumorigenesis, metastasis, targeted therapy and drug resistance of hepatocellular carcinoma. World J. Gastroenterol. 24(41), 4643–4651 (2018). https://doi.org/10.3748/wjg.v24.i41.4643
Article CAS PubMed Central Google Scholar
J.L. Nieto-Torres, M. Hansen, Macroautophagy and aging: the impact of cellular recycling on health and longevity. Mol. Aspects Med. 82, 101020 (2021). https://doi.org/10.1016/j.mam.2021.101020
Article CAS PubMed Central Google Scholar
C. Kang, S.J. Elledge, How autophagy both activates and inhibits cellular senescence. Autophagy 12(5), 898–899 (2016). https://doi.org/10.1080/15548627.2015.1121361
Article CAS PubMed Central Google Scholar
M. Rovira, R. Sereda, D. Pladevall-Morera, V. Ramponi, I. Marin, M. Maus, J. Madrigal-Matute, A. Díaz, F. García, J. Muñoz, et al., The lysosomal proteome of senescent cells contributes to the senescence secretome. Aging Cell 21(10), e13707 (2022). https://doi.org/10.1111/acel.13707
Article CAS PubMed Central Google Scholar
J. Beauvarlet, P. Bensadoun, E. Darbo, G. Labrunie, B. Rousseau, E. Richard, I. Draskovic, A. Londono-Vallejo, J.W. Dupuy, R. Nath Das, et al., Modulation of the ATM/autophagy pathway by a G-quadruplex ligand tips the balance between senescence and apoptosis in cancer cells. Nucleic Acids Res. 47(6), 2739–2756 (2019). https://doi.org/10.1093/nar/gkz095
Article CAS PubMed Central Google Scholar
X. Hao, Y. Shiromoto, M. Sakurai, M. Towers, Q. Zhang, S. Wu, A. Havas, L. Wang, S. Berger, P.D. Adams, et al., ADAR1 downregulation by autophagy drives senescence independently of RNA editing by enhancing p16(INK4a) levels. Nat. Cell. Biol. 24(8), 1202–1210 (2022). https://doi.org/10.1038/s41556-022-00959-z
Article CAS PubMed Central Google Scholar
M. Abdellatif, P.P. Rainer, S. Sedej, G. Kroemer, Hallmarks of cardiovascular ageing. Nat. Rev. Cardiol. 20(11), 754–777 (2023). https://doi.org/10.1038/s41569-023-00881-3
H. Zhu, Q. Li, T. Liao, X. Yin, Q. Chen, Z. Wang, M. Dai, L. Yi, S. Ge, C. Miao, et al., Metabolomic profiling of single enlarged lysosomes. Nat. Methods 18(7), 788–798 (2021). https://doi.org/10.1038/s41592-021-01182-8
T. Eisenberg, H. Knauer, A. Schauer, S. Büttner, C. Ruckenstuhl, D. Carmona-Gutierrez, J. Ring, S. Schroeder, C. Magnes, L. Antonacci, et al., Induction of autophagy by spermidine promotes longevity. Nat. Cell. Biol. 11(11), 1305–1314 (2009). https://doi.org/10.1038/ncb1975
T. Wilhelm, J. Byrne, R. Medina, E. Kolundžić, J. Geisinger, M. Hajduskova, B. Tursun, H. Richly, Neuronal inhibition of the autophagy nucleation complex extends life span in post-reproductive C. elegans. Genes Dev. 31(15), 1561–1572 (2017). https://doi.org/10.1101/gad.301648.117
Article CAS PubMed Central Google Scholar
Y. Dong, Y. Wu, G.L. Zhao, Z.Y. Ye, C.G. Xing, X.D. Yang, Inhibition of autophagy by 3-MA promotes hypoxia-induced apoptosis in human colorectal cancer cells. Eur. Rev. Med. Pharmacol. Sci. 23(3), 1047–1054 (2019). https://doi.org/10.26355/eurrev_201902_16992
K. Yu, L. Xiang, S. Li, S. Wang, C. Chen, H. Mu, HIF1α promotes prostate cancer progression by increasing ATG5 expression. Anim. Cells Syst. (Seoul) 23(5), 326–334 (2019). https://doi.org/10.1080/19768354.2019.1658637
N.M. Mazure, J. Pouysségur, Hypoxia-induced autophagy: cell death or cell survival? Curr. Opin. Cell Biol. 22(2), 177–180 (2010). https://doi.org/10.1016/j.ceb.2009.11.015
F. Xu, Y. Hu, J. Gao, J. Wang, Y. Xie, F. Sun, L. Wang, A. Miyamoto, O. Xia, C. Zhang, HIF-1α/Malat1/miR-141 axis activates autophagy to increase proliferation, migration, and invasion in triple-negative breast cancer. Curr. Cancer Drug Targets 23(5), 363–378 (2023). https://doi.org/10.2174/1568009623666221228104833
J. Vivian, A.A. Rao, F.A. Nothaft, C. Ketchum, J. Armstrong, A. Novak, J. Pfeil, J. Narkizian, A.D. Deran, A. Musselman-Brown, et al., Toil enables reproducible, open source, big biomedical data analyses. Nat. Biotechnol. 35(4), 314–316 (2017). https://doi.org/10.1038/nbt.3772
Article CAS PubMed Central Google Scholar
M. Luo, L. Ye, R. Chang, Y. Ye, Z. Zhang, C. Liu, S. Li, Y. Jing, H. Ruan, G. Zhang, et al., Multi-omics characterization of autophagy-related molecular features for therapeutic targeting of autophagy. Nat. Commun. 13(1), 6345 (2022). https://doi.org/10.1038/s41467-022-33946-x
Article CAS PubMed Central Google Scholar
G.L. Semenza, M.K. Nejfelt, S.M. Chi, S.E. Antonarakis, Hypoxia-inducible nuclear factors bind to an enhancer element located 3’ to the human erythropoietin gene. Proc. Natl. Acad. Sci. U. S. A. 88(13), 5680–5684 (1991). https://doi.org/10.1073/pnas.88.13.5680
Article CAS PubMed Central Google Scholar
G.L. Wang, B.H. Jiang, E.A. Rue, G.L. Semenza, Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. U. S. A. 92(12), 5510–5514 (1995). https://doi.org/10.1073/pnas.92.12.5510
Comments (0)