USP28 promotes tumor progression and glycolysis by stabilizing PKM2/Hif1-α in cholangiocarcinoma

D. Mennerich, K. Kubaichuk, T. Kietzmann, DUBs, Hypoxia, and Cancer. Trends Cancer. 5, 632–653 (2019)

Article  CAS  PubMed  Google Scholar 

D. Zhang, K. Zaugg, T.W. Mak, S.J. Elledge, A role for the deubiquitinating enzyme USP28 in control of the DNA-damage response. Cell. 126, 529–542 (2006)

Article  CAS  PubMed  Google Scholar 

F. Bassermann, D. Frescas, D. Guardavaccaro, L. Busino, A. Peschiaroli, M. Pagano, The Cdc14B-Cdh1-Plk1 axis controls the G2 DNA-damage-response checkpoint. Cell. 134, 256–267 (2008)

Article  CAS  PubMed  PubMed Central  Google Scholar 

M.E. Diefenbacher, N. Popov, S.M. Blake, C. Schülein-Völk, E. Nye, B. Spencer-Dene, L.A. Jaenicke et al., The deubiquitinase USP28 controls intestinal homeostasis and promotes colorectal cancer. J. Clin. Invest. 124, 3407–3418 (2014)

Article  CAS  PubMed  PubMed Central  Google Scholar 

C.R. Maier, O. Hartmann, C. Prieto-Garcia, K.M. Al-Shami, L. Schlicker, F.C.E. Vogel, S. Haid et al., USP28 controls SREBP2 and the mevalonate pathway to drive tumour growth in squamous cancer. Cell. Death Differ. 30, 1710–1725 (2023)

Article  CAS  PubMed  PubMed Central  Google Scholar 

J. Zhu, G. Huang, X. Hua, Y. Li, H. Yan, X. Che, Z. Tian et al., CD44s is a crucial ATG7 downstream regulator for stem-like property, invasion, and lung metastasis of human bladder cancer (BC) cells. Oncogene. 38, 3301–3315 (2019)

Article  CAS  PubMed  PubMed Central  Google Scholar 

B. Cui, Y. Luo, P. Tian, F. Peng, J. Lu, Y. Yang, Q. Su et al., Stress-induced epinephrine enhances lactate dehydrogenase A and promotes breast cancer stem-like cells. J. Clin. Invest. 129, 1030–1046 (2019)

Article  PubMed  PubMed Central  Google Scholar 

L. Chen, Z. Xu, Q. Li, Q. Feng, C. Zheng, Y. Du, R. Yuan et al., USP28 facilitates pancreatic cancer progression through activation of Wnt/β-catenin pathway via stabilising FOXM1. Cell. Death Dis. 12, 887 (2021)

Article  CAS  PubMed  PubMed Central  Google Scholar 

P. Icard, L. Fournel, Z. Wu, M. Alifano, H. Lincet, Interconnection between metabolism and cell cycle in Cancer. Trends Biochem. Sci. 44, 490–501 (2019)

Article  CAS  PubMed  Google Scholar 

L. Traxler, J.R. Herdy, D. Stefanoni, S. Eichhorner, S. Pelucchi, A. Szücs, A. Santagostino et al., Warburg-like metabolic transformation underlies neuronal degeneration in sporadic Alzheimer’s disease. Cell. Metab. 34, 1248–1263e1246 (2022)

Article  CAS  PubMed  PubMed Central  Google Scholar 

W. Yang, Y. Xia, H. Ji, Y. Zheng, J. Liang, W. Huang, X. Gao et al., Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation. Nature. 480, 118–122 (2011)

Article  CAS  PubMed  PubMed Central  Google Scholar 

G. Li, J.E. Choi, I. Kryczek, Y. Sun, P. Liao, S. Li, S. Wei et al., Intersection of immune and oncometabolic pathways drives cancer hyperprogression during immunotherapy. Cancer Cell. 41, 304–322e307 (2023)

Article  CAS  PubMed  PubMed Central  Google Scholar 

G. Yu, W. Yu, G. Jin, D. Xu, Y. Chen, T. Xia, A. Yu et al., PKM2 regulates neural invasion of and predicts poor prognosis for human hilar cholangiocarcinoma. Mol. Cancer. 14, 193 (2015)

Article  PubMed  PubMed Central  Google Scholar 

M. Zhang, Y. Pan, D. Tang, R.G. Dorfman, L. Xu, Q. Zhou, L. Zhou et al., Low levels of pyruvate induced by a positive feedback loop protects cholangiocarcinoma cells from apoptosis. Cell. Commun. Signal. 17, 23 (2019)

Article  PubMed  PubMed Central  Google Scholar 

N. Azoitei, A. Becher, K. Steinestel, A. Rouhi, K. Diepold, F. Genze, T. Simmet et al., PKM2 promotes tumor angiogenesis by regulating Hif1-α through NF-κB activation. Mol. Cancer. 15, 3 (2016)

Article  PubMed  PubMed Central  Google Scholar 

E.M. Palsson-McDermott, A.M. Curtis, G. Goel, M.A. Lauterbach, F.J. Sheedy, L.E. Gleeson, van den M.W. Bosch et al., Pyruvate kinase M2 regulates Hif1-α activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell. Metab. 21, 65–80 (2015)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Q. Hua, B. Mi, F. Xu, J. Wen, L. Zhao, J. Liu, G. Huang, Hypoxia-induced lncRNA-AC020978 promotes proliferation and glycolytic metabolism of non-small cell lung cancer by regulating PKM2/Hif1-α axis. Theranostics. 10, 4762–4778 (2020)

Article  CAS  PubMed  PubMed Central  Google Scholar 

S.M. Lange, L.A. Armstrong, Y. Kulathu, Deubiquitinases, From mechanisms to their inhibition by small molecules. Mol. Cell. 82, 15–29 (2022)

Article  CAS  PubMed  Google Scholar 

B. Chen, Y. Sang, X. Song, D. Zhang, L. Wang, W. Zhao, Y. Liang et al., Exosomal miR-500a-5p derived from cancer-associated fibroblasts promotes breast cancer cell proliferation and metastasis through targeting USP28. Theranostics. 11, 3932–3947 (2021)

Article  CAS  PubMed  PubMed Central  Google Scholar 

D. Guo, Y. Tong, X. Jiang, Y. Meng, H. Jiang, L. Du, Q. Wu et al., Anaerobic glycolysis promotes tumor immune evasion by hexokinase2-mediated phosphorylation of IκBα. Cell. Metab. 34, 1312–1324e1316 (2022)

Article  CAS  PubMed  Google Scholar 

X. Zhang, F. Luo, S. Luo, L. Li, X. Ren, J. Lin, Y. Liang et al., Transcriptional repression of anaerobic glycolysis by OVOL2 in breast Cancer. Adv. Sci. (Weinh). 9, e2200705 (2022)

Article  PubMed  Google Scholar 

F. Deng, R. Zhou, C. Lin, S. Yang, H. Wang, W. Li, K. Zheng et al., Tumor-secreted dickkopf2 accelerates anaerobic glycolysis and promotes angiogenesis in colorectal cancer. Theranostics. 9, 1001–1014 (2019)

Article  CAS  PubMed  PubMed Central  Google Scholar 

J. Feng, J. Li, L. Wu, Q. Yu, J. Ji, J. Wu, W. Dai et al., Emerging roles and the regulation of anaerobic glycolysis in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 39, 126 (2020)

Article  CAS  PubMed  PubMed Central  Google Scholar 

C. Raggi, M.L. Taddei, C. Rae, C. Braconi, F. Marra, Metabolic reprogramming in cholangiocarcinoma. J. Hepatol. 77, 849–864 (2022)

Article  CAS  PubMed  Google Scholar 

J. Gao, Y. Fang, J. Chen, Z. Tang, M. Tian, X. Jiang, C. Tao et al., Methyltransferase like 3 inhibition limits intrahepatic cholangiocarcinoma metabolic reprogramming and potentiates the efficacy of chemotherapy. Oncogene. 42, 2507–2520 (2023)

Article  CAS  PubMed  Google Scholar 

S. Lu, S. Ke, C. Wang, Y. Xu, Z. Li, K. Song, M. Bai et al., NNMT promotes the progression of intrahepatic cholangiocarcinoma by regulating anaerobic glycolysis via the EGFR-STAT3 axis. Oncogenesis. 11, 39 (2022)

Article  CAS  PubMed  PubMed Central  Google Scholar 

T. Chen, K. Li, Z. Liu, J. Liu, Y. Wang, R. Sun, Z. Li et al., WDR5 facilitates EMT and metastasis of CCA by increasing Hif1-α accumulation in myc-dependent and independent pathways. Mol. Ther. 29, 2134–2150 (2021)

Article  CAS  PubMed  PubMed Central  Google Scholar 

W. Jiang, X. Shi, L. Sun, Y. Zhang, X. Kong, X. Yang, Y. Yin et al., Exosomal miR-30a-5p promoted intrahepatic cholangiocarcinoma progression by increasing angiogenesis and vascular permeability in PDCD10 dependent manner. Int. J. Biol. Sci. 19, 4571–4587 (2023)

Article  CAS  PubMed 

Comments (0)

No login
gif