World Health Organization (2018) WHO - the top 10 causes of death, 24 Maggio. WHO, Geneva, Switzerland
Bongomin F, Gago S, Oladele RO, Denning DW (2017) Global and multi-national prevalence of fungal diseases—estimate precision. J Fungi 3. https://doi.org/10.3390/jof3040057
Bretagne S, Sitbon K, Desnos-Ollivier M et al (2022) Active surveillance program to increase awareness on invasive fungal diseases: the french ressif network (2012 to 2018). mBio 13. https://doi.org/10.1128/mbio.00920-22
Rajasingham R, Smith RM, Park BJ et al (2017) Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis 17:873–881. https://doi.org/10.1016/S1473-3099(17)30243-8
Article PubMed PubMed Central Google Scholar
Kullberg BJ, Arendrup M (2015) Invasive candidiasis. N Engl J Med 373:1445–1456. https://doi.org/10.1056/NEJMra1315399
Arendrup MC, Patterson TF (2017) Multidrug-resistant Candida: epidemiology, molecular mechanisms, and treatment. J Infect Dis 216:445–451. https://doi.org/10.1093/infdis/jix131
Brandão FAS, Derengowski LS, Albuquerque P et al (2015) Histone deacetylases inhibitors effects on Cryptococcus neoformans major virulence phenotypes. Virulence 6:618–630. https://doi.org/10.1080/21505594.2015.1038014
Article PubMed PubMed Central CAS Google Scholar
Brandão F, Esher SK, Ost KS et al (2018) HDAC genes play distinct and redundant roles in Cryptococcus neoformans virulence. Sci Rep 8:1–17. https://doi.org/10.1038/s41598-018-21965-y
Gusa A, Williams JD, Cho JE et al (2020) Transposon mobilization in the human fungal pathogen Cryptococcus is mutagenic during infection and promotes drug resistance in vitro. Proc Natl Acad Sci U S A 117:9973–9980. https://doi.org/10.1073/pnas.2001451117
Article PubMed PubMed Central CAS Google Scholar
Ouargli M, Gacemi-Kirane D, Mansouri R et al (2015) Antifungal activity of Streptomyces sp. against environmental and clinical Cryptococcus spp. isolates. J Chem Pharm Res 7:1019–1027
Zhou B, Ji YY, Zhang HJ, Shen L (2021) Gephyyamycin and cysrabelomycin, two new angucyclinone derivatives from the Streptomyces sp. HN-A124. Nat Prod Res 35:2117–2122. https://doi.org/10.1080/14786419.2019.1660336
Article PubMed CAS Google Scholar
Hung J, Lee C, Hsu H et al (2021) Recent advances in photodynamic therapy against fungal keratitis. Pharmaceutics 13:2011
Article PubMed PubMed Central CAS Google Scholar
Bagga B, Sharma S, Ahirwar LK et al (2022) Clinical outcomes of rose bengal mediated photodynamic antimicrobial therapy on fungal keratitis with their microbiological and pathological correlation. Curr Eye Res 1–8:1. https://doi.org/10.1080/02713683.2022.2058019
Du M, Xuan W, Zhen X et al (2021) Antimicrobial photodynamic therapy for oral Candida infection in adult AIDS patients: a pilot clinical trial. Photodiagnosis Photodyn Ther 34:102310. https://doi.org/10.1016/j.pdpdt.2021.102310
Article PubMed CAS Google Scholar
Tiburcio MA, Rocha AR, Romano RA et al (2022) In vitro evaluation of the cis-[Ru(phen)2(pPDIp)]2+⁎⁎ complex for antimicrobial photodynamic therapy against Sporothrix brasiliensis and Candida albicans. J Photochem Photobiol B 229:112414. https://doi.org/10.1016/J.JPHOTOBIOL.2022.112414
Article PubMed CAS Google Scholar
Morais JAV, Rodrigues MC, Ferreira FF et al (2020) Photodynamic therapy inhibits cell growth and enhances the histone deacetylase-mediated viability impairment in Cryptococcus spp. in vitro. Photodiagnosis Photodyn Ther 29. https://doi.org/10.1016/j.pdpdt.2019.101583
Ranjan K, Brandão F, Morais JAV et al (2021) The role of Cryptococcus neoformans histone deacetylase genes in the response to antifungal drugs, epigenetic modulators and to photodynamic therapy mediated by an aluminium phthalocyanine chloride nanoemulsion in vitro. J Photochem Photobiol B 216:112131. https://doi.org/10.1016/j.jphotobiol.2021.112131
Article PubMed CAS Google Scholar
Al-Mutairi R, Tovmasyan A, Batinic-Haberle I, Benov L (2018) Sublethal photodynamic treatment does not lead to development of resistance. Front Microbiol 9:1–9. https://doi.org/10.3389/fmicb.2018.01699
Goyal M, Nagori BP, Sasmal D (2012) Review on ethnomedicinal uses, pharmacological activity and phytochemical constituents of Ziziphus mauritiana (Z. Jujuba Lam., non Mill) Ziziphus. Spatula 2:107. https://doi.org/10.5455/spatula.20120422080614
Bashir T, Mashwani Z-U-R, Zahara K et al (2015) Chemistry, pharmacology and ethnomedicinal uses of Helianthus annuus (sunflower): a review. Pure Appl Biol 4:226–235
Schmitt S, Tsai P, Bell J et al (2012) Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J 6:564–576. https://doi.org/10.1038/ismej.2011.116
Article PubMed CAS Google Scholar
Schäfer J, Jäckel U, Kämpfer P (2010) Development of a new PCR primer system for selective amplification of actinobacteria. FEMS Microbiol Lett 311:103–112. https://doi.org/10.1111/j.1574-6968.2010.02069.x
Article PubMed CAS Google Scholar
Clinical and Laboratory Standards Institute (CLSI) (2008) Reference method for broth dilution antifungal susceptibility testing of yeasts. 3rd ed. Wayne: Clinical and Laboratory Standards Institute. (Approved standard. M27-A3)
Muehlmann AL, Rodrigues CM, Longo PJ et al (2015) Aluminium-phthalocyanine chloride nanoemulsions for anticancer photodynamic therapy: development and in vitro activity against monolayers and spheroids of human mammary adenocarcinoma MCF-7 cells. J Nanobiotechnol 13. https://doi.org/10.1186/s12951-015-0095-3
Graça AP, Viana F, Bondoso J et al (2015) The antimicrobial activity of heterotrophic bacteria isolated from the marine sponge Erylus deficiens (Astrophorida, Geodiidae). Front Microbiol 6:131762. https://doi.org/10.3389/fmicb.2015.00389
Edet ML, Hemalatha S (2023) Identification of natural CTXM-15 inhibitors from aqueous extract of endophytic bacteria Cronobactersakazaki. Braz J Microbiol 54:827–839. https://doi.org/10.1007/s42770-023-00945-z
Article PubMed PubMed Central CAS Google Scholar
Amorim EA, da Castro F, da Souza EJM et al (2020) Antimicrobial potential of Streptomyces ansochromogenes (PB3) isolated from a plant native to the Amazon against Pseudomonas aeruginosa. Front Microbiol 11. https://doi.org/10.3389/fmicb.2020.574693
Khebizi N, Boudjella H, Bijani C et al (2017) Oligomycins a and E, major bioactive secondary metabolites produced by Streptomyces sp. strain HG29 isolated from a Saharan soil. J Mycol Med 28:150–160. https://doi.org/10.1016/j.mycmed.2017.10.007
Hosoya T, Hirokawa T, Takagi M, Shin-ya K (2013) Trichostatin analogues JBIR-109, JBIR-110, and JBIR-111 from the marine sponge-derived Streptomyces sp. RM72. J Nat Prod 76:1231–1231. https://doi.org/10.1021/np400470r
Conte M, Fontana E, Nebbioso A, Altucci L (2020) Marine-derived secondary metabolites as promising epigenetic bio-compounds for anticancer therapy. Mar Drugs 19:15. https://doi.org/10.3390/md19010015
Article PubMed PubMed Central CAS Google Scholar
Angiolella L, Rojas F, Giammarino A et al (2024) Identification of virulence factors in isolates of Candida Haemulonii, Candida albicans and Clavispora lusitaniae with low susceptibility and resistance to fluconazole and amphotericin B. Microorganisms 12:212. https://doi.org/10.3390/microorganisms12010212
Article PubMed PubMed Central CAS Google Scholar
Morales EG, Guidi M, Peterka T et al (2021) Primary cutaneous cryptococcosis due to Cryptococcus neoformans in an immunocompetent host treated with itraconazole and drainage: case report and review of the literature. Case Rep Dermatol 13:89–97. https://doi.org/10.1159/000512289
Flores-Maldonado OE, Montoya AM, Andrade A et al (2019) Evaluation of the induction of cell-mediated immunity against Candida albicans in a model of cutaneous infection in newborn 0-day-old mice. Mycopathologia 184:747–757. https://doi.org/10.1007/s11046-019-00398-9
Article PubMed CAS Google Scholar
Rodrigues GB, Brancini GTP, Pinto MR et al (2020) Photodynamic inactivation of Candida albicans and Candida tropicalis with aluminum phthalocyanine chloride nanoemulsion. Fungal Biol 124:297–303. https://doi.org/10.1016/j.funbio.2019.08.004
Article PubMed CAS Google Scholar
Pérez-Laguna V, Barrena-López Y, Gilaberte Y, Rezusta A (2021) In vitro effect of photodynamic therapy with different lights and combined or uncombined with chlorhexidine on candida Spp. Pharmaceutics 13:1176. https://doi.org/10.3390/pharmaceutics13081176
Article PubMed PubMed Central CAS Google Scholar
Khozeimeh F, Tavangar A, Razaghi Abyaneh M et al (2023) Evaluation of the effects of photodynamic therapy with methylene blue on different Candida species in vitro. J Lasers Med Sci 14:e34. https://doi.org/10.34172/jlms.2023.34
Comments (0)