Stupp R, Taillibert S, Kanner AA et al (2015) Maintenance Therapy with Tumor-Treating Fields Plus Temozolomide vs Temozolomide alone for Glioblastoma: a Randomized Clinical Trial. JAMA 314:2535–2543. https://doi.org/10.1001/jama.2015.16669
Article PubMed CAS Google Scholar
Chinot OL, Wick W, Mason W et al (2014) Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 370:709–722. https://doi.org/10.1056/NEJMoa1308345
Article PubMed CAS Google Scholar
Gilbert MR, Dignam JJ, Armstrong TS et al (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370:699–708. https://doi.org/10.1056/NEJMoa1308573
Article PubMed PubMed Central CAS Google Scholar
Lote K, Stenwig AE, Skullerud K, Hirschberg H (1998) Prevalence and prognostic significance of epilepsy in patients with gliomas. Eur J Cancer 34:98–102. https://doi.org/10.1016/s0959-8049(97)00374-2
Article PubMed CAS Google Scholar
van Breemen MSM, Rijsman RM, Taphoorn MJB et al (2009) Efficacy of anti-epileptic drugs in patients with gliomas and seizures. J Neurol 256:1519–1526. https://doi.org/10.1007/s00415-009-5156-9
Kerkhof M, Vecht CJ (2013) Seizure characteristics and prognostic factors of gliomas. Epilepsia 54 Suppl 9:12–17. https://doi.org/10.1111/epi.12437
Yang P, Liang T, Zhang C et al (2016) Clinicopathological factors predictive of postoperative seizures in patients with gliomas. Seizure 35:93–99. https://doi.org/10.1016/j.seizure.2015.12.013
Article PubMed CAS Google Scholar
Englot DJ, Han SJ, Lawton MT, Chang EF (2011) Predictors of seizure freedom in the surgical treatment of supratentorial cavernous malformations. J Neurosurg 115:1169–1174. https://doi.org/10.3171/2011.7.JNS11536
You G, Huang L, Yang P et al (2012) Clinical and molecular genetic factors affecting postoperative seizure control of 183 Chinese adult patients with low-grade gliomas. Eur J Neurol 19:298–306. https://doi.org/10.1111/j.1468-1331.2011.03509.x
Article PubMed CAS Google Scholar
van Breemen MSM, Wilms EB, Vecht CJ (2007) Epilepsy in patients with brain tumours: epidemiology, mechanisms, and management. Lancet Neurol 6:421–430. https://doi.org/10.1016/S1474-4422(07)70103-5
Kamali AN, Zian Z, Bautista JM et al (2021) The potential role of pro-inflammatory and anti-inflammatory cytokines in Epilepsy Pathogenesis. Endocr Metab Immune Disord Drug Targets 21:1760–1774. https://doi.org/10.2174/1871530320999201116200940
Article PubMed CAS Google Scholar
Haroon E, Miller AH, Sanacora G (2017) Inflammation, glutamate, and Glia: a Trio of trouble in Mood disorders. Neuropsychopharmacology 42:193–215. https://doi.org/10.1038/npp.2016.199
Article PubMed CAS Google Scholar
Hori T, Sasayama T, Tanaka K et al (2019) Tumor-associated macrophage related interleukin-6 in cerebrospinal fluid as a prognostic marker for glioblastoma. J Clin Neurosci 68:281–289. https://doi.org/10.1016/j.jocn.2019.07.020
Article PubMed CAS Google Scholar
Klemm F, Maas RR, Bowman RL et al (2020) Interrogation of the Microenvironmental Landscape in Brain Tumors reveals Disease-specific alterations of Immune cells. Cell 181:1643–1660e17. https://doi.org/10.1016/j.cell.2020.05.007
Article PubMed PubMed Central CAS Google Scholar
Hu W, Li X, Zhang C et al (2016) Tumor-associated macrophages in cancers. Clin Transl Oncol 18:251–258. https://doi.org/10.1007/s12094-015-1373-0
Article PubMed CAS Google Scholar
Kawanishi N, Yano H, Yokogawa Y, Suzuki K (2010) Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice. Exerc Immunol Rev 16:105–118
Huang X, Li Y, Fu M, Xin H-B (2018) Polarizing macrophages in Vitro. Methods Mol Biol 1784:119–126. https://doi.org/10.1007/978-1-4939-7837-3_12
Article PubMed PubMed Central CAS Google Scholar
Du N, Wu K, Zhang J et al (2021) Inonotsuoxide B regulates M1 to M2 macrophage polarization through sirtuin-1/endoplasmic reticulum stress axis. Int Immunopharmacol 96:107603. https://doi.org/10.1016/j.intimp.2021.107603
Article PubMed CAS Google Scholar
Sasayama T, Tanaka K, Mizowaki T et al (2016) Tumor-Associated macrophages Associate with Cerebrospinal Fluid Interleukin-10 and survival in primary central nervous system lymphoma (PCNSL). Brain Pathol 26:479–487. https://doi.org/10.1111/bpa.12318
Article PubMed CAS Google Scholar
Kemmerer CL, Schittenhelm J, Dubois E et al (2021) Cerebrospinal fluid cytokine levels are associated with macrophage infiltration into tumor tissues of glioma patients. BMC Cancer 21:1108. https://doi.org/10.1186/s12885-021-08825-1
Article PubMed PubMed Central CAS Google Scholar
Hashiguchi M, Tanaka K, Nagashima H et al (2022) Glutamic acid and total creatine as predictive markers for Epilepsy in Glioblastoma by using magnetic resonance spectroscopy before surgery. World Neurosurg 160:e501–e510. https://doi.org/10.1016/j.wneu.2022.01.056
Iwahashi H, Nagashima H, Tanaka K et al (2023) 2-Hydroxyglutarate magnetic resonance spectroscopy in adult brainstem glioma. J Neurosurg 139:355–362. https://doi.org/10.3171/2022.12.JNS221954
Article PubMed CAS Google Scholar
Nagashima H, Tanaka K, Sasayama T et al (2016) Diagnostic value of glutamate with 2-hydroxyglutarate in magnetic resonance spectroscopy for IDH1 mutant glioma. Neuro Oncol 18:1559–1568. https://doi.org/10.1093/neuonc/now090
Article PubMed PubMed Central CAS Google Scholar
Graveron-Demilly D (2014) Quantification in magnetic resonance spectroscopy based on semi-parametric approaches. MAGMA 27:113–130. https://doi.org/10.1007/s10334-013-0393-4
Yuen TI, Morokoff AP, Bjorksten A et al (2012) Glutamate is associated with a higher risk of seizures in patients with gliomas. Neurology 79:883–889. https://doi.org/10.1212/WNL.0b013e318266fa89
Article PubMed CAS Google Scholar
Gonen OM, Moffat BA, Desmond PM et al (2020) Seven-tesla quantitative magnetic resonance spectroscopy of glutamate, γ-aminobutyric acid, and glutathione in the posterior cingulate cortex/precuneus in patients with epilepsy. Epilepsia 61:2785–2794. https://doi.org/10.1111/epi.16731
Article PubMed CAS Google Scholar
Pallud J, Le Van Quyen M, Bielle F et al (2014) Cortical GABAergic excitation contributes to epileptic activities around human glioma. Sci Transl Med 6:244ra89. https://doi.org/10.1126/scitranslmed.3008065
Article PubMed PubMed Central CAS Google Scholar
Vanhoutte N, Hermans E (2008) Glutamate-induced glioma cell proliferation is prevented by functional expression of the glutamate transporter GLT-1. FEBS Lett 582:1847–1852. https://doi.org/10.1016/j.febslet.2008.04.053
Article PubMed CAS Google Scholar
de Groot JF, Liu TJ, Fuller G, Yung WKA (2005) The excitatory amino acid transporter-2 induces apoptosis and decreases glioma growth in vitro and in vivo. Cancer Res 65:1934–1940. https://doi.org/10.1158/0008-5472.CAN-04-3626
Comments (0)