Ranjan S, Devarapalli R, Kundu S, Vangala VR, Ghosh A, Reddy CM. Three new hydrochlorothiazide cocrystals: Structural analyses and solubility studies. J Mol Struct Elsevier. 2017;1133:405–10.
Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins: Basic science and product development. J Pharm Pharmacol. 2010;62:1607–21.
Article CAS PubMed Google Scholar
Karagianni A, Malamatari M, Kachrimanis K. Pharmaceutical cocrystals: new solid phase modification approaches for the formulation of APIs. Pharmaceutics Multidisciplinary Digital Publishing Institute. 2018;10:18.
Roy P, Ghosh A. Progress on cocrystallization of poorly soluble NME’s in the last decade. CrystEngComm Royal Society of Chemistry. 2020;22:6958–74.
Kumar Bandaru R, Rout SR, Kenguva G, Gorain B, Alhakamy NA, Kesharwani P, et al. Recent Advances in Pharmaceutical Cocrystals: From Bench to Market. Front Pharmacol. 2021;12:1–16.
Hussain K, Qamar A, Bukhari NI, Hussain A, Shehzadi N, Qamar S, et al. Impact of Particle-Size Reduction on the Solubility and Antidiabetic Activity of Extracts of Leaves of Vinca rosea. Turkish J Pharm Sci. 2019;16:335–9.
Park JW, Kim SH, Choi SJ. Effect of cosolvent and surfactant on the solubility and stability of citral in a beverage model. Appl Biol Chem. 2016;59:471–4. https://doi.org/10.1007/s13765-016-0181-8.
Bhujbal S V, Mitra B, Jain U, Gong Y, Agrawal A, Karki S, et al. Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. Acta Pharm Sin B [Internet]. 2021;11:2505–36. Available from: https://www.sciencedirect.com/science/article/pii/S2211383521001805
Dwichandra Putra O, Umeda D, Fujita E, Haraguchi T, Uchida T, Yonemochi E, et al. Solubility Improvement of Benexate through Salt Formation Using Artificial Sweetener. Pharmaceutics. 2018;10.
Aitipamula S, Chow PS, Tan RBH. Polymorphism in cocrystals: a review and assessment of its significance. CrystEngComm Royal Society of Chemistry. 2014;16:3451–65.
Jornada DH, dos Santos Fernandes GF, Chiba DE, de Melo TRF, dos Santos JL, Chung MC. The Prodrug Approach: A Successful Tool for Improving Drug Solubility. Molecules. 2015;21:42.
Article PubMed PubMed Central Google Scholar
Kumari N, Ghosh A. Cocrystallization: Cutting Edge Tool for Physicochemical Modulation of Active Pharmaceutical Ingredients. Curr Pharm Des [Internet]. Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi - 835215, Jharkhand, India.; 2020;26:4858–82. Available from: http://europepmc.org/abstract/MED/32691702
Roy P, Ghosh A. Mechanochemical cocrystallization to improve the physicochemical properties of chlorzoxazone. CrystEngComm Royal Society of Chemistry. 2020;22:4611–20.
Kundu S, Kumari N, Soni SR, Ranjan S, Kumar R, Sharon A, et al. Enhanced solubility of telmisartan phthalic acid cocrystals within the pH range of a systemic absorption site. ACS omega ACS Publications. 2018;3:15380–8.
Izutsu K, Koide T, Takata N, Ikeda Y, Ono M, Inoue M, et al. Characterization and quality control of pharmaceutical cocrystals. Chem Pharm Bull. The Pharmaceutical Society of Japan; 2016;c16–00233.
Bolla G, Sarma B, Nangia AK. Crystal Engineering of Pharmaceutical Cocrystals in the Discovery and Development of Improved Drugs. Chem Rev. 2022;122:11514–603.
Article CAS PubMed Google Scholar
Thakuria R, Delori A, Jones W, Lipert MP, Roy L, Rodríguez-Hornedo N. Pharmaceutical cocrystals and poorly soluble drugs. Int J Pharm [Internet]. Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.; 2013;453:101–25. Available from: http://europepmc.org/abstract/MED/23207015
Bethune SJ, Huang N, Jayasankar A, Rodriguez-Hornedo N. Understanding and predicting the effect of cocrystal components and pH on cocrystal solubility. Cryst Growth Des ACS Publications. 2009;9:3976–88.
Li J-M, Dai X-L, Li G-J, Lu T-B, Chen J-M. Constructing Anti-Glioma Drug Combination with Optimized Properties through Cocrystallization. Cryst Growth Des ACS Publications. 2018;18:4270–4.
Kuminek G, Cao F, da Rocha AB de O, Cardoso SG, Rodríguez-Hornedo N. Cocrystals to facilitate delivery of poorly soluble compounds beyond-rule-of-5. Adv Drug Deliv Rev. Elsevier; 2016;101:143–66.
Pan Y, Pang W, Lv J, Wang J, Yang C, Guo W. Solid state characterization of azelnidipine–oxalic acid co-crystal and co-amorphous complexes: The effect of different azelnidipine polymorphs. J Pharm Biomed Anal Elsevier. 2017;138:302–15.
Han Y, Pan Y, Lv J, Guo W, Wang J. Powder grinding preparation of co-amorphous β-azelnidipine and maleic acid combination: molecular interactions and physicochemical properties. Powder Technol Elsevier. 2016;291:110–20.
Lian W, Lin Y, Wang M, Yang C, Wang J. Crystal engineering approach to produce complex of azelnidipine with maleic acid. CrystEngComm. 2013;15:3885–91.
Watanabe M, Hirano T, Okamoto S, Shiraishi S, Tomiguchi S, Uchino M. Azelnidipine , a long-acting calcium channel blocker , could control hypertension without decreasing cerebral blood flow in post-ischemic stroke patients . A 123 I-IMP SPECT follow-up study. Hypertens Res. Nature Publishing Group; 2010;43–8.
Gaikwad SS, Avari JG. Improved bioavailability of Azelnidipine gastro retentive tablets-optimization and in-vivo assessment. Mater Sci Eng C [Internet]. Elsevier; 2019;103:109800. Available from: https://doi.org/10.1016/j.msec.2019.109800
McMahon JA, Bis JA, Vishweshwar P, Shattock TR, McLaughlin OL, Zaworotko MJ. Crystal engineering of the composition of pharmaceutical phases. 3. Primary amide supramolecular heterosynthons and their role in the design of pharmaceutical co-crystals. Zeitschrift für Krist - Cryst Mater [Internet]. 2005;220:340–50. Available from: https://doi.org/10.1524/zkri.220.4.340.61624
Khan M, Enkelmann V, Brunklaus G. Crystal Engineering of Pharmaceutical Co-crystals: Application of Methyl Paraben as Molecular Hook. J Am Chem Soc [Internet]. American Chemical Society; 2010;132:5254–63. Available from: https://doi.org/10.1021/ja100146f
Fael H, Barbas R, Prohens R, Ràfols C, Fuguet E. Synthesis and Characterization of a New Norfloxacin/Resorcinol Cocrystal with Enhanced Solubility and Dissolution Profile. Pharmaceutics [Internet]. 2022;14. Available from: https://www.mdpi.com/1999-4923/14/1/49
Guideline ICH. Q1A (R)(2000) Stability testing of new drugs and products. ICH, Geneva www.eudra.org/emea.html.
Löbmann K, Laitinen R, Grohganz H, Gordon KC, Strachan C, Rades T. Coamorphous drug systems: enhanced physical stability and dissolution rate of indomethacin and naproxen. Mol Pharm ACS Publications. 2011;8:1919–28.
Dhibar M, Chakraborty S, Basak S, Pattanayak P, Chatterjee T, Ghosh B, et al. Critical Analysis and Optimization of Stoichiometric Ratio of Drug-Coformer on Cocrystal Design: Molecular Docking, In Vitro and In Vivo Assessment. Pharmaceuticals. 2023;16.
Krishnan S, Raj CJ, Robert R, Ramanand A, Jerome DS. Growth and characterization of succinic acid single crystals. Cryst Res Technol. 2007;42:1087–90.
Pal TK, Kharat RB. Salicylic acid‐biuret‐trioxane terpolymer resins and their ion‐exchange properties. Die Angew Makromol Chemie Appl Macromol Chem Phys. Wiley Online Library; 1989;173:55–68.
Ferreira PO, de Almeida AC, dos Santos ÉC, Junior RD, Ferreira FF, Kogawa AC, et al. A norfloxacin-nicotinic acid cocrystal: Mechanochemical synthesis, thermal and structural characterization and solubility assays. Thermochim Acta. Elsevier; 2020;694:178782.
Mendelsohn LD. ChemDraw 8 ultra, windows and macintosh versions. J Chem Inf Comput Sci. ACS Publications. 2004;44:2225–6.
Kawabata K, Sakaue M, Akimoto S, Miyara M, Kotake Y. Journal of Pharmaceutical and Biomedical Analysis Evaluation of photostability of azelnidipine tablets and structure determination of its photoproducts. J Pharm Biomed Anal [Internet]. Elsevier B.V.; 2023;233:115471. Available from: https://doi.org/10.1016/j.jpba.2023.115471
Du S, Li WS, Wu YR, Fu Y, Yang C, Wang J. stability of amorphous azelnidipine and its. Royal Society of Chemistry; 2018;32756–64.
Comments (0)