Yanagawa M, Ito R, Nozaki T, Fujioka T, Yamada A, Fujita S, et al. New trend in artificial intelligence-based assistive technology for thoracic imaging. Radiol Med. 2023;128:1236–49.
Article PubMed PubMed Central Google Scholar
Fujima N, Kamagata K, Ueda D, Fujita S, Fushimi Y, Yanagawa M, et al. Current state of artificial intelligence in clinical applications for head and neck MR imaging. Magn Reson Med Sci. 2023;22:401–14.
Article PubMed PubMed Central Google Scholar
Tatsugami F, Nakaura T, Yanagawa M, Fujita S, Kamagata K, Ito R, et al. Recent advances in artificial intelligence for cardiac CT: enhancing diagnosis and prognosis prediction. Diagn Interv Imaging. 2023;104:521–8.
Yamada A, Kamagata K, Hirata K, Ito R, Nakaura T, Ueda D, et al. Clinical applications of artificial intelligence in liver imaging. Radiol Med. 2023;128:655–67.
Hirata K, Kamagata K, Ueda D, Yanagawa M, Kawamura M, Nakaura T, et al. From FDG and beyond: the evolving potential of nuclear medicine. Ann Nucl Med. 2023;37:583–95.
Article CAS PubMed Google Scholar
Hirata K, Sugimori H, Fujima N, Toyonaga T, Kudo K. Artificial intelligence for nuclear medicine in oncology. Ann Nucl Med. 2022;36:123–32.
Toda N, Hashimoto M, Iwabuchi Y, Nagasaka M, Takeshita R, Yamada M, et al. Validation of deep learning-based computer-aided detection software use for interpretation of pulmonary abnormalities on chest radiographs and examination of factors that influence readers’ performance and final diagnosis. Jpn J Radiol. 2023;41:38–44.
Uematsu T, Nakashima K, Harada TL, Nasu H, Igarashi T. Comparisons between artificial intelligence computer-aided detection synthesized mammograms and digital mammograms when used alone and in combination with tomosynthesis images in a virtual screening setting. Jpn J Radiol. 2023;41:63–70.
Ishihara M, Shiiba M, Maruno H, Kato M, Ohmoto-Sekine Y, Antoine C, et al. Detection of intracranial aneurysms using deep learning-based CAD system: usefulness of the scores of CNN’s final layer for distinguishing between aneurysm and infundibular dilatation. Jpn J Radiol. 2023;41:131–41.
Nakao T, Hanaoka S, Nomura Y, Hayashi N, Abe O. Anomaly detection in chest 18F-FDG PET/CT by Bayesian deep learning. Jpn J Radiol. 2022;40:730–9.
Article CAS PubMed PubMed Central Google Scholar
Lv E, Liu W, Wen P, Kang X. Classification of benign and malignant lung nodules based on deep convolutional network feature extraction. J Healthc Eng. 2021;2021:8769652.
Article PubMed PubMed Central Google Scholar
Goto M, Sakai K, Toyama Y, Nakai Y, Yamada K. Use of a deep learning algorithm for non-mass enhancement on breast MRI: comparison with radiologists’ interpretations at various levels. Jpn J Radiol. 2023;41:1094–103.
Article PubMed PubMed Central Google Scholar
Ozaki J, Fujioka T, Yamaga E, Hayashi A, Kujiraoka Y, Imokawa T, et al. Deep learning method with a convolutional neural network for image classification of normal and metastatic axillary lymph nodes on breast ultrasonography. Jpn J Radiol. 2022;40:814–22.
Gao R, Zhao S, Aishanjiang K, Cai H, Wei T, Zhang Y, et al. Deep learning for differential diagnosis of malignant hepatic tumors based on multi-phase contrast-enhanced CT and clinical data. J Hematol Oncol. 2021;14:154.
Article PubMed PubMed Central Google Scholar
Tanaka T, Huang Y, Marukawa Y, Tsuboi Y, Masaoka Y, Kojima K, et al. Differentiation of small (≤ 4 cm) renal masses on multi-phase contrast-enhanced CT by deep learning. Am J Roentgenol. 2020;214:605–12.
Oshima S, Fushimi Y, Miyake KK, Nakajima S, Sakata A, Okuchi S, et al. Denoising approach with deep learning-based reconstruction for neuromelanin-sensitive MRI: image quality and diagnostic performance. Jpn J Radiol. 2023;41:1216–25.
Article CAS PubMed PubMed Central Google Scholar
Hamabuchi N, Ohno Y, Kimata H, Ito Y, Fujii K, Akino N, et al. Effectiveness of deep learning reconstruction on standard to ultra-low-dose high-definition chest CT images. Jpn J Radiol. 2023;41:1373–88.
Article PubMed PubMed Central Google Scholar
Hosoi R, Yasaka K, Mizuki M, Yamaguchi H, Miyo R, Hamada A, et al. Deep learning reconstruction with single-energy metal artifact reduction in pelvic computed tomography for patients with metal hip prostheses. Jpn J Radiol. 2023;41:863–71.
Article PubMed PubMed Central Google Scholar
Yasaka K, Akai H, Sugawara H, Tajima T, Akahane M, Yoshioka N, et al. Impact of deep learning reconstruction on intracranial 1.5 T magnetic resonance angiography. Jpn J Radiol. 2022;40(5):476–83.
Kaga T, Noda Y, Mori T, Kawai N, Miyoshi T, Hyodo F, et al. Unenhanced abdominal low-dose CT reconstructed with deep learning-based image reconstruction: image quality and anatomical structure depiction. Jpn J Radiol. 2022;40:703–11.
Article CAS PubMed PubMed Central Google Scholar
Kitahara H, Nagatani Y, Otani H, Nakayama R, Kida Y, Sonoda A, et al. A novel strategy to develop deep learning for image super-resolution using original ultra-high-resolution computed tomography images of lung as training dataset. Jpn J Radiol. 2022;40:38–47.
Kawamura M, Kamomae T, Yanagawa M, Kamagata K, Fujita S, Ueda D, et al. Revolutionizing radiation therapy: the role of AI in clinical practice. J Radiat Res. 2024;65:1–9.
Chapiro J, Allen B, Abajian A, Wood B, Kothary N, Daye D, et al. Proceedings from the Society of Interventional Radiology Foundation Research Consensus Panel on artificial intelligence in interventional radiology: from code to bedside. J Vasc Interv Radiol. 2022;33:1113–20.
Seah J, Boeken T, Sapoval M, Goh GS. Prime time for artificial intelligence in interventional radiology. Cardiovasc Intervent Radiol. 2022;45:283–9.
Article PubMed PubMed Central Google Scholar
Gurgitano M, Angileri SA, Rodà GM, Liguori A, Pandolfi M, Ierardi AM, et al. Interventional radiology ex-machina: impact of artificial intelligence on practice. Radiol Med. 2021;126:998–1006.
Article PubMed PubMed Central Google Scholar
von Ende E, Ryan S, Crain MA, Makary MS. Artificial intelligence, augmented reality, and virtual reality advances and applications in interventional radiology. Diagnostics (Basel). 2023;13:892.
Fite EL, Makary MS. Transarterial chemoembolization treatment paradigms for hepatocellular carcinoma. Cancers. 2024;16:2430.
Article CAS PubMed PubMed Central Google Scholar
Higashihara H, Kimura Y, Ono Y, Tanaka K, Tomiyama N. Effective utilization of conventional transarterial chemoembolization and drug-eluting bead transarterial chemoembolization in hepatocellular carcinoma: a guide to proper usage. Interv Radiol. 2023. https://doi.org/10.22575/interventionalradiology.2023-0009.
Matsui Y, Iguchi T, Tomita K, Uka M, Sakurai J, Gobara H, et al. Radiofrequency ablation for stage I non-small cell lung cancer: an updated review of literature from the last decade. Interv Radiol. 2020;5:43–9.
Matsui Y, Tomita K, Uka M, Umakoshi N, Kawabata T, Munetomo K, et al. Up-to-date evidence on image-guided thermal ablation for metastatic lung tumors: a review. Jpn J Radiol. 2022;40:1024–34.
Article PubMed PubMed Central Google Scholar
Tomita K, Matsui Y, Uka M, Umakoshi N, Kawabata T, Munetomo K, et al. Evidence on percutaneous radiofrequency and microwave ablation for liver metastases over the last decade. Jpn J Radiol. 2022;40:1035–45.
Article PubMed PubMed Central Google Scholar
Fujimori M, Yamanaka T, Sugino Y, Matsushita N, Sakuma H. Percutaneous image-guided thermal ablation for renal cell carcinoma. Interv Radiol. 2020;5:32–42.
Comments (0)