Culleton BF, Larson MG, Wilson PW et al (1999) Cardiovascular disease and mortality in a community-based cohort with mild renal insufficiency. Kidney Int 56:2214–2219. https://doi.org/10.1046/j.1523-1755.1999.00773.x
Article CAS PubMed Google Scholar
Ho CY, Shanahan CM (2016) Medial arterial calcification. Arterioscler Thromb Vasc Biol 36:1475–1482. https://doi.org/10.1161/ATVBAHA.116.306717
Article CAS PubMed Google Scholar
Mizobuchi M, Towler D, Slatopolsky E (2009) Vascular calcification: The killer of patients with chronic kidney disease. J Am Soc Nephrol JASN 20:1453–1464. https://doi.org/10.1681/ASN.2008070692
Article CAS PubMed Google Scholar
Lee SJ, Lee I-K, Jeon J-H (2020) Vascular calcification—new insights into its mechanism. Int J Mol Sci 21:2685. https://doi.org/10.3390/ijms21082685
Article CAS PubMed PubMed Central Google Scholar
Lin M-E, Chen T, Leaf EM et al (2015) Runx2 expression in smooth muscle cells is required for arterial medial calcification in mice. Am J Pathol 185:1958–1969. https://doi.org/10.1016/j.ajpath.2015.03.020
Article CAS PubMed PubMed Central Google Scholar
Patidar A, Singh DK, Thakur S et al (2019) Uremic serum-induced calcification of human aortic smooth muscle cells is a regulated process involving Klotho and RUNX2. Biosci Rep 39:BSR20190599. https://doi.org/10.1042/BSR20190599
Article CAS PubMed PubMed Central Google Scholar
Giachelli CM (2009) The emerging role of phosphate in vascular calcification. Kidney Int 75:890–897. https://doi.org/10.1038/ki.2008.644
Article CAS PubMed PubMed Central Google Scholar
Westenfeld R, Schäfer C, Smeets R et al (2007) Fetuin-A (AHSG) prevents extraosseous calcification induced by uraemia and phosphate challenge in mice. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc Eur Ren Assoc 22:1537–1546. https://doi.org/10.1093/ndt/gfm094
Lorenzen JM, Martino F, Scheffner I et al (2012) Fetuin, matrix-gla protein and osteopontin in calcification of renal allografts. PLoS ONE 7:e52039. https://doi.org/10.1371/journal.pone.0052039
Article CAS PubMed PubMed Central Google Scholar
Moe SM, Reslerova M, Ketteler M et al (2005) Role of calcification inhibitors in the pathogenesis of vascular calcification in chronic kidney disease (CKD). Kidney Int 67:2295–2304. https://doi.org/10.1111/j.1523-1755.2005.00333.x
Article CAS PubMed Google Scholar
Azpiazu D, Gonzalo S, González-Parra E et al (2018) Role of pyrophosphate in vascular calcification in chronic kidney disease. Nefrología 38:250–257
Villa-Bellosta R, Egido J (2015) Phosphate, pyrophosphate, and vascular calcification: A question of balance. Eur Heart J. https://doi.org/10.1093/eurheartj/ehv605
Villa-Bellosta R, O’Neill WC (2018) Pyrophosphate deficiency in vascular calcification. Kidney Int 93:1293–1297. https://doi.org/10.1016/j.kint.2017.11.035
Article CAS PubMed Google Scholar
Lomashvili KA, Khawandi W, O’Neill WC (2005) Reduced plasma pyrophosphate levels in hemodialysis patients. J Am Soc Nephrol JASN 16:2495–2500. https://doi.org/10.1681/ASN.2004080694
Article CAS PubMed Google Scholar
Laurain A, Rubera I, Duranton C et al (2020) Alkaline phosphatases account for low plasma levels of inorganic pyrophosphate in chronic kidney disease. Front Cell Dev Biol 8:586831. https://doi.org/10.3389/fcell.2020.586831
Article PubMed PubMed Central Google Scholar
Jansen RS, Duijst S, Mahakena S et al (2014) ABCC6-mediated ATP secretion by the liver is the main source of the mineralization inhibitor inorganic pyrophosphate in the systemic circulation-brief report. Arterioscler Thromb Vasc Biol 34:1985–1989
Article CAS PubMed PubMed Central Google Scholar
Rutsch F, Buers I, Nitschke Y (2021) Hereditary disorders of cardiovascular calcification. Arterioscler Thromb Vasc Biol 41:35–47. https://doi.org/10.1161/ATVBAHA.120.315577
Article CAS PubMed Google Scholar
Rutsch F, Nitschke Y, Terkeltaub R (2011) Genetics in arterial calcification: Pieces of a puzzle and cogs in a wheel. Circ Res 109:578–592. https://doi.org/10.1161/CIRCRESAHA.111.247965
Article CAS PubMed PubMed Central Google Scholar
Kovesdy CP, Ureche V, Lu JL, Kalantar-Zadeh K (2010) Outcome predictability of serum alkaline phosphatase in men with pre-dialysis CKD. Nephrol Dial Transplant 25:3003–3011. https://doi.org/10.1093/ndt/gfq144
Article CAS PubMed PubMed Central Google Scholar
Gorgels TGMF, Hu X, Scheffer GL et al (2005) Disruption of Abcc6 in the mouse: Novel insight in the pathogenesis of pseudoxanthoma elasticum. Hum Mol Genet 14:1763–1773. https://doi.org/10.1093/hmg/ddi183
Article CAS PubMed Google Scholar
O’Neill WC, Lomashvili KA, Malluche HH et al (2011) Treatment with pyrophosphate inhibits uremic vascular calcification. Kidney Int 79:512–517. https://doi.org/10.1038/ki.2010.461
Article CAS PubMed Google Scholar
Dedinszki D, Szeri F, Kozák E et al (2017) Oral administration of pyrophosphate inhibits connective tissue calcification. EMBO Mol Med 9:1463–1470. https://doi.org/10.15252/emmm.201707532
Article CAS PubMed PubMed Central Google Scholar
Pomozi V, Julian CB, Zoll J et al (2018) Dietary pyrophosphate modulates calcification in a mouse model of pseudoxanthoma elasticum: Implication for treatment of patients. J Invest Dermatol. https://doi.org/10.1016/j.jid.2018.10.040
Article PubMed PubMed Central Google Scholar
Pomozi V, Brampton C, van de Wetering K et al (2017) Pyrophosphate supplementation prevents chronic and acute calcification in ABCC6-deficient mice. Am J Pathol 187:1258–1272. https://doi.org/10.1016/j.ajpath.2017.02.009
Article CAS PubMed PubMed Central Google Scholar
Letavernier E, Kauffenstein G, Huguet L et al (2018) ABCC6 deficiency promotes development of randall plaque. J Am Soc Nephrol JASN 29:2337–2347. https://doi.org/10.1681/ASN.2017101148
Article CAS PubMed Google Scholar
Centre Hospitalier Universitaire de Nice, Leftheriotis G (2022) PyROphosPHate supplementation to fight ECtopIc calcification in PseudoXanthoma Elasticum: PROPHECI Study. https://clinicaltrials.gov/study/NCT04868578
Comments (0)