Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.
Article CAS PubMed Google Scholar
Marenco-Hillembrand L, Wijesekera O, Suarez-Meade P, Mampre D, Jackson C, Peterson J, et al. Trends in glioblastoma: outcomes over time and type of intervention: a systematic evidence based analysis. J Neurooncol. 2020;147:297–307.
Sampetrean O, Saya H. Characteristics of glioma stem cells. Brain Tumor Pathol. 2013;30:209–14.
Article CAS PubMed Google Scholar
Schonberg DL, Lubelski D, Miller TE, Rich JN. Brain tumor stem cells: molecular characteristics and their impact on therapy. Mol Asp Med. 2014;39:82–101.
Safa AR, Saadatzadeh MR, Cohen-Gadol AA, Pollok KE, Bijangi-Vishehsaraei K. Glioblastoma stem cells (GSCs) epigenetic plasticity and interconversion between differentiated non-GSCs and GSCs. Genes Dis. 2015;2:152–63.
Article PubMed PubMed Central Google Scholar
Shen S-H, Yu N, Liu X-Y, Tan G-W, Wang Z-X. Gamma-glutamylcyclotransferase promotes the growth of human glioma cells by activating Notch-Akt signaling. Biochem Biophys Res Commun. 2016;471:616–20.
Article CAS PubMed Google Scholar
He Z, Wang S, Shao Y, Zhang J, Wu X, Chen Y, et al. Ras downstream effector GGCT alleviates oncogenic stress. iScience. 2019;19:256–66.
Article PubMed PubMed Central Google Scholar
Oakley AJ, Coggan M, Board PG. Identification and characterization of gamma-glutamylamine cyclotransferase, an enzyme responsible for gamma-glutamyl-epsilon-lysine catabolism. J Biol Chem. 2010;285:9642–8.
Article CAS PubMed PubMed Central Google Scholar
Kageyama S, Ii H, Taniguchi K, Kubota S, Yoshida T, Isono T, et al. Mechanisms of tumor growth inhibition by depletion of γ-glutamylcyclotransferase (GGCT): a novel molecular target for anticancer therapy. Int J Mol Sci. 2018;19:2054.
Article PubMed PubMed Central Google Scholar
Matsumura K, Nakata S, Taniguchi K, Ii H, Ashihara E, Kageyama S, et al. Depletion of γ-glutamylcyclotransferase inhibits breast cancer cell growth via cellular senescence induction mediated by CDK inhibitor upregulation. BMC Cancer. 2016;16:748.
Article PubMed PubMed Central Google Scholar
Taniguchi K, Matsumura K, Kageyama S, Ii H, Ashihara E, Chano T, et al. Prohibitin-2 is a novel regulator of p21WAF1/CIP1 induced by depletion of γ-glutamylcyclotransferase. Biochem Biophys Res Commun. 2018;496:218–24.
Article CAS PubMed Google Scholar
Taniguchi K, Ii H, Kageyama S, Takagi H, Chano T, Kawauchi A, et al. Depletion of gamma-glutamylcyclotransferase inhibits cancer cell growth by activating the AMPK-FOXO3a-p21 axis. Biochem Biophys Res Commun. 2019;517:238–43.
Article CAS PubMed Google Scholar
Taniguchi K, Matsumura K, Ii H, Kageyama S, Ashihara E, Chano T, et al. Depletion of gamma-glutamylcyclotransferase in cancer cells induces autophagy followed by cellular senescence. Am J Cancer Res. 2018;8:650–61.
CAS PubMed PubMed Central Google Scholar
Ii H, Yoshiya T, Nakata S, Taniguchi K, Hidaka K, Tsuda S, et al. A novel prodrug of a γ-glutamylcyclotransferase inhibitor suppresses cancer cell proliferation in vitro and inhibits tumor growth in a xenograft mouse model of prostate cancer. ChemMedChem. 2018;13:155–63.
Article CAS PubMed Google Scholar
Ii H, Nohara Y, Yoshiya T, Masuda S, Tsuda S, Oishi S, et al. Identification of U83836E as a γ-glutamylcyclotransferase inhibitor that suppresses MCF7 breast cancer xenograft growth. Biochem Biophys Res Commun. 2021;549:128–34.
Article CAS PubMed Google Scholar
Ii H, Kasahara Y, Yamaguma H, Kageyama S, Kawauchi A, Obika S, et al. Administration of Gapmer-type Antisense Oligonucleotides Targeting γ-Glutamylcyclotransferase Suppresses the Growth of A549 Lung Cancer Xenografts. Anticancer Res. 2022;42:1221–7.
Article CAS PubMed Google Scholar
Ohno Y, Hattori A, Ueda M, Kageyama S, Yoshiki T, Kakeya H. Multiple NF-Y-binding CCAAT boxes are essential for transcriptional regulation of the human C7orf24 gene, a novel tumor-associated gene. FEBS J. 2011;278:4088–99.
Article CAS PubMed Google Scholar
Meng Q, Xia Y. c-Jun, at the crossroad of the signaling network. Protein Cell. 2011;2:889–98.
Article CAS PubMed PubMed Central Google Scholar
Wagner EF, Nebreda AR. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 2009;9:537–49.
Article CAS PubMed Google Scholar
Zhou B, Lin W, Long Y, Yang Y, Zhang H, Wu K, et al. Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther. 2022;7:95.
Article PubMed PubMed Central Google Scholar
Wang J, Wakeman TP, Lathia JD, Hjelmeland AB, Wang X-F, White RR, et al. Notch promotes radioresistance of glioma stem cells. Stem Cells. 2010;28:17–28.
Article CAS PubMed Google Scholar
Hu Y-Y, Zheng M-H, Cheng G, Li L, Liang L, Gao F, et al. Notch signaling contributes to the maintenance of both normal neural stem cells and patient-derived glioma stem cells. BMC Cancer. 2011;11:82.
Article CAS PubMed PubMed Central Google Scholar
Bayin NS, Frenster JD, Sen R, Si S, Modrek AS, Galifianakis N, et al. Notch signaling regulates metabolic heterogeneity in glioblastoma stem cells. Oncotarget. 2017;8:64932–53.
Article PubMed PubMed Central Google Scholar
Ding D, Lim KS, Eberhart CG. Arsenic trioxide inhibits Hedgehog, Notch and stem cell properties in glioblastoma neurospheres. Acta Neuropathol Commun. 2014;2:31.
Article PubMed PubMed Central Google Scholar
Alvarez-Trotta A, Guerrant W, Astudillo L, Lahiry M, Diluvio G, Shersher E. et al. Pharmacological disruption of the Notch1 transcriptional complex inhibits tumor growth by selectively targeting cancer stem cells. Cancer Res. 2021;81:3347–57.
Article CAS PubMed PubMed Central Google Scholar
Noisa P, Lund C, Kanduri K, Lund R, Lähdesmäki H, Lahesmaa R, et al. Notch signaling regulates the differentiation of neural crest from human pluripotent stem cells. J Cell Sci. 2014;127:2083–94.
Teodorczyk M, Schmidt MHH. Notching on cancer’s door: Notch signaling in brain tumors. Front Oncol. 2015;4:341.
Article PubMed PubMed Central Google Scholar
Wiesner SM, Decker SA, Larson JD, Ericson K, Forster C, Gallardo JL, et al. De novo induction of genetically engineered brain tumors in mice using plasmid DNA. Cancer Res. 2009;69:431–9.
Article CAS PubMed PubMed Central Google Scholar
Tanigawa S, Fujita M, Moyama C, Ando S, Ii H, Kojima Y, et al. Inhibition of Gli2 suppresses tumorigenicity in glioblastoma stem cells derived from a de novo murine brain cancer model. Cancer Gene Ther. 2021;28:1339–52.
Article CAS PubMed Google Scholar
Moyama C, Fujita M, Ando S, Taniguchi K, Ii H, Tanigawa S, et al. Stat5b inhibition blocks proliferation and tumorigenicity of glioblastoma stem cells derived from a de novo murine brain cancer model. Am J Cancer Res. 2022;12:1129–42.
Comments (0)