Alisol B 23-Acetate Affects a Podocyte Injury Model by Inhibiting PI3K/AKT/mTOR Signaling

Cai G, Zhang J, Wang R (2021) [Down-regulation of PHLPP1 expression ameliorates high glucose-induced autophagy inhibition and apoptosis promotion of podocytes by activating PI3K/AKT/mTOR pathway]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 37:8–15

PubMed  Google Scholar 

Chen L, Chen DQ, Wang M, Liu D, Chen H, Dou F, Vaziri ND, Zhao YY (2017) Role of RAS/Wnt/β-catenin axis activation in the pathogenesis of podocyte injury and tubulo-interstitial nephropathy. Chem Biol Interact 273:56–72. https://doi.org/10.1016/j.cbi.2017.05.025

Article  PubMed  CAS  Google Scholar 

Chen Y, Zheng YF, Lin XH, Zhang JP, Lin F, Shi H (2021) Dendrobium mixture attenuates renal damage in rats with diabetic nephropathy by inhibiting the PI3K/Akt/mTOR pathway. Mol Med Rep. https://doi.org/10.3892/mmr.2021.12229

Article  PubMed  PubMed Central  Google Scholar 

Dai X, Liao R, Liu C, Liu S, Huang H, Liu J, Jin T, Guo H, Zheng Z, Xia M, Ling W, Xiao Y (2021) Epigenetic regulation of TXNIP-mediated oxidative stress and NLRP3 inflammasome activation contributes to SAHH inhibition-aggravated diabetic nephropathy. Redox Biol 45:102033. https://doi.org/10.1016/j.redox.2021.102033

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dash S, Chougule A, Mohanty S (2022) Correlation of Albuminuria and Diabetic Retinopathy in Type-II diabetes Mellitus patients. Cureus 14:e21927. https://doi.org/10.7759/cureus.21927

Article  PubMed  PubMed Central  Google Scholar 

Elmarakby AA, Sullivan JC (2012) Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy. Cardiovasc Ther 30:49–59. https://doi.org/10.1111/j.1755-5922.2010.00218.x

Article  PubMed  CAS  Google Scholar 

Ersahin T, Tuncbag N, Cetin-Atalay R (2015) The PI3K/AKT/mTOR interactive pathway. Mol Biosyst 11:1946–1954. https://doi.org/10.1039/c5mb00101c

Article  PubMed  CAS  Google Scholar 

Kumawat M, Sharma TK, Singh I, Singh N, Ghalaut VS, Vardey SK, Shankar V (2013) Antioxidant enzymes and lipid peroxidation in type 2 diabetes Mellitus patients with and without Nephropathy. N Am J Med Sci 5:213–219. https://doi.org/10.4103/1947-2714.109193

Article  PubMed  PubMed Central  Google Scholar 

Liao J, Liu B, Chen K, Hu S, Liu ZY, Li YX, Yang ZM, Zhang M, Chen X (2021) Galangin attenuates oxidative stress-mediated apoptosis in high glucose-induced renal tubular epithelial cells through modulating renin-angiotensin system and PI3K/AKT/mTOR pathway. Toxicol Res (Camb) 10:551–560. https://doi.org/10.1093/toxres/tfab009

Article  PubMed  Google Scholar 

Luan ZL, Ming WH, Sun XW, Zhang C, Zhou Y, Zheng F, Yang YL, Guan YF, Zhang XY (2021) A naturally occurring FXR agonist, alisol B 23-acetate, protects against renal ischemia-reperfusion injury. Am J Physiol Ren Physiol 321:F617. https://doi.org/10.1152/ajprenal.00193.2021

Article  CAS  Google Scholar 

Nagasu H, Satoh M, Kiyokage E, Kidokoro K, Toida K, Channon KM, Kanwar YS, Sasaki T, Kashihara N (2016) Activation of endothelial NAD(P)H oxidase accelerates early glomerular injury in diabetic mice. Lab Invest 96:25–36. https://doi.org/10.1038/labinvest.2015.128

Article  PubMed  CAS  Google Scholar 

Ogura Y, Kitada M, Xu J, Monno I, Koya D (2020) CD38 inhibition by apigenin ameliorates mitochondrial oxidative stress through restoration of the intracellular NAD(+)/NADH ratio and Sirt3 activity in renal tubular cells in diabetic rats. Aging 12:11325–11336. https://doi.org/10.18632/aging.103410

Article  PubMed  PubMed Central  CAS  Google Scholar 

Podgórski P, Konieczny A, Lis Ł, Witkiewicz W, Hruby Z (2019) Glomerular podocytes in diabetic renal disease. Adv Clin Exp Med 28:1711–1715. https://doi.org/10.17219/acem/104534

Article  PubMed  Google Scholar 

Porta C, Paglino C, Mosca A (2014) Targeting PI3K/Akt/mTOR signaling in Cancer. Front Oncol 4:64. https://doi.org/10.3389/fonc.2014.00064

Article  PubMed  PubMed Central  Google Scholar 

Quan X, Liu H, Ye D, Ding X, Su X (2021) Forsythoside A alleviates high glucose-Induced oxidative stress and inflammation in Podocytes by inactivating MAPK signaling via MMP12 inhibition. Diabetes Metab Syndr Obes 14:1885–1895. https://doi.org/10.2147/dmso.S305092

Article  PubMed  PubMed Central  Google Scholar 

Samsu N (2021) Diabetic nephropathy: challenges in pathogenesis, diagnosis, and treatment. Biomed Res Int 2021:1497449. https://doi.org/10.1155/2021/1497449

Article  Google Scholar 

Selby NM, Taal MW (2020) An updated overview of diabetic nephropathy: diagnosis, prognosis, treatment goals and latest guidelines. Diabetes Obes Metab 22(Suppl 1):13–15. https://doi.org/10.1111/dom.14007

Article  PubMed  Google Scholar 

Sun GD, Li CY, Cui WP, Guo QY, Dong CQ, Zou HB, Liu SJ, Dong WP, Miao LN (2016) Review of herbal traditional chinese medicine for the treatment of diabetic nephropathy. J Diabetes Res 2016:5749857. https://doi.org/10.1155/2016/5749857

Article  PubMed  CAS  Google Scholar 

Sun Y, Long J, Chen W, Sun Y, Zhou L, Zhang L, Zeng H, Yuan D (2021) Alisol B 23-acetate, a new promoter for cholesterol efflux from dendritic cells, alleviates dyslipidemia and inflammation in advanced atherosclerotic mice. Int Immunopharmacol 99:107956. https://doi.org/10.1016/j.intimp.2021.107956

Article  PubMed  CAS  Google Scholar 

Tang G, Du Y, Guan H, Jia J, Zhu N, Shi Y, Rong S, Yuan W (2022) Butyrate ameliorates skeletal muscle atrophy in diabetic nephropathy by enhancing gut barrier function and FFA2-mediated PI3K/Akt/mTOR signals. Br J Pharmacol 179:159–178. https://doi.org/10.1111/bph.15693

Article  PubMed  CAS  Google Scholar 

Tung CW, Hsu YC, Shih YH, Chang PJ, Lin CL (2018) Glomerular mesangial cell and podocyte injuries in diabetic nephropathy. Nephrology (Carlton)  4(23 Suppl):32–37. https://doi.org/10.1111/nep.13451

Article  CAS  Google Scholar 

Wang P, Song T, Shi R, He M, Wang R, Lv J, Jiang M (2020) Triterpenoids from Alisma species: phytochemistry, structure modification, and bioactivities. Front Chem 8:363. https://doi.org/10.3389/fchem.2020.00363

Article  PubMed  PubMed Central  CAS  Google Scholar 

Xing L, Guo H, Meng S, Zhu B, Fang J, Huang J, Chen J, Wang Y, Wang L, Yao X, Wang H (2021) Klotho ameliorates diabetic nephropathy by activating Nrf2 signaling pathway in podocytes. Biochem Biophys Res Commun 534:450–456. https://doi.org/10.1016/j.bbrc.2020.11.061

Article  PubMed  CAS  Google Scholar 

Xu X, Li L, Zhang Y, Lu X, Lin W, Wu S, Qin X, Xu R, Lin W (2020) Hypolipidemic effect of Alisma orientale (Sam.) Juzep on gut microecology and liver transcriptome in diabetic rats. PLoS ONE 15:e0240616. https://doi.org/10.1371/journal.pone.0240616

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang M, Shi X, Luo M, Lan Q, Ullah H, Zhang C, Li S, Chen X, Wang Y, Piao F (2021) Taurine ameliorates axonal damage in sciatic nerve of diabetic rats and high glucose exposed DRG neuron by PI3K/Akt/mTOR-dependent pathway. Amino Acids 53:395–406. https://doi.org/10.1007/s00726-021-02957-1

Article  PubMed  CAS  Google Scholar 

Zheng D, Tao M, Liang X, Li Y, Jin J, He Q (2020) p66Shc regulates podocyte autophagy in high glucose environment through the Notch-PTEN-PI3K/Akt/mTOR pathway. Histol Histopathol 35:405–415. https://doi.org/10.14670/hh-18-178

Article  PubMed  CAS  Google Scholar 

Zhu HC, Jia XK, Fan Y, Xu SH, Li XY, Huang MQ, Lan ML, Xu W, Wu SS (2021) Alisol B 23-Acetate ameliorates Azoxymethane/Dextran Sodium Sulfate-Induced Male Murine Colitis-Associated Colorectal Cancer via modulating the composition of gut microbiota and improving intestinal barrier. Front Cell Infect Microbiol 11:640225. https://doi.org/10.3389/fcimb.2021.640225

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zou HH, Yang PP, Huang TL, Zheng XX, Xu GS (2017) PLK2 plays an essential role in high D-Glucose-Induced apoptosis, ROS generation and inflammation in podocytes. Sci Rep 7:4261. https://doi.org/10.1038/s41598-017-00686-8

Article  PubMed 

Comments (0)

No login
gif