Tonelli M, Wiebe N, Knoll G, Bello A, Browne S, Jadhav D, Klarenbach S, Gill J (2011) Systematic review: kidney transplantation compared with dialysis in clinically relevant outcomes. Am J Transplant 11(10):2093–2109. https://doi.org/10.1111/j.1600-6143.2011.03686.x
Article CAS PubMed Google Scholar
Thongprayoon C, Hansrivijit P, Leeaphorn N, Acharya P, Torres-Ortiz A, Kaewput W, Kovvuru K, Kanduri SR, Bathini T, Cheungpasitporn W (2020) Recent advances and clinical outcomes of kidney transplantation. J Clin Med. https://doi.org/10.3390/jcm9041193
Article PubMed PubMed Central Google Scholar
KDIGO CKD–MBD Update Work Group (2017) KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Suppl (2011) 7(1):1–59. https://doi.org/10.1016/j.kisu.2017.04.001
Moe S, Drüeke T, Cunningham J, Goodman W, Martin K, Olgaard K, Ott S, Sprague S, Lameire N, Eknoyan G (2006) Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 69(11):1945–1953. https://doi.org/10.1038/sj.ki.5000414
Article CAS PubMed Google Scholar
Mace ML, Egstrand S, Morevati M, Olgaard K, Lewin E (2021) New insights to the crosstalk between vascular and bone tissue in chronic kidney disease–mineral and bone disorder. Metabolites. https://doi.org/10.3390/metabo11120849
Article PubMed PubMed Central Google Scholar
Vangala C, Pan J, Cotton RT, Ramanathan V (2018) Mineral and bone disorders after kidney transplantation. Front Med (Lausanne) 5:211. https://doi.org/10.3389/fmed.2018.00211
Evenepoel P, Naesens M, Claes K, Kuypers D, Vanrenterghem Y (2007) Tertiary ‘hyperphosphatoninism’ accentuates hypophosphatemia and suppresses calcitriol levels in renal transplant recipients. Am J Transplant 7(5):1193–1200. https://doi.org/10.1111/j.1600-6143.2007.01753.x
Article CAS PubMed Google Scholar
Figurek A, Rroji M, Spasovski G (2020) Sclerostin: a new biomarker of CKD–MBD. Int Urol Nephrol 52(1):107–113. https://doi.org/10.1007/s11255-019-02290-3
Tartaglione L, Pasquali M, Rotondi S, Muci ML, Leonangeli C, Farcomeni A, Fassino V, Mazzaferro S (2017) Interactions of sclerostin with FGF23, soluble klotho and vitamin D in renal transplantation. PLoS ONE 12(5):e0178637. https://doi.org/10.1371/journal.pone.0178637
Article CAS PubMed PubMed Central Google Scholar
Basir H, Altunoren O, Erken E, Kilinc M, Sarisik FN, Isiktas S, Gungor O (2019) Relationship between osteoporosis and serum sclerostin levels in kidney transplant recipients. Exp Clin Transplant. https://doi.org/10.6002/ect.2019.0022
Hsu BG, Liou HH, Lee CJ, Chen YC, Ho GJ, Lee MC (2016) Serum sclerostin as an independent marker of peripheral arterial stiffness in renal transplantation recipients: a cross-sectional study. Medicine (Baltim) 95(15):e3300. https://doi.org/10.1097/md.0000000000003300
Evenepoel P, Claes K, Viaene L, Bammens B, Meijers B, Naesens M, Sprangers B, Kuypers D (2016) Decreased circulating sclerostin levels in renal transplant recipients with persistent hyperparathyroidism. Transplantation 100(10):2188–2193. https://doi.org/10.1097/tp.0000000000001311
Article CAS PubMed Google Scholar
Magalhães J, Quelhas-Santos J, Pereira L, Neto R, Castro-Ferreira I, Martins S, Frazão JM, Carvalho C (2022) Could bone biomarkers predict bone turnover after kidney transplantation? A proof-of-concept study. J Clin Med. https://doi.org/10.3390/jcm11020457
Article PubMed PubMed Central Google Scholar
Ferreira AC, Cotovio P, Aires I, Mendes M, Navarro D, Silva C, Caeiro F, Salvador R, Correia B, Cabral G, Nolasco F, Ferreira A (2022) The role of bone volume, FGF23 and sclerostin in calcifications and mortality; a cohort study in CKD stage 5 patients. Calcif Tissue Int 110(2):215–224. https://doi.org/10.1007/s00223-021-00910-8
Article CAS PubMed Google Scholar
Wang YP, Sidibé A, Fortier C, Desjardins MP, Ung RV, Kremer R, Agharazii M, Mac-Way F (2023) Wnt/β-catenin pathway inhibitors, bone metabolism and vascular health in kidney transplant patients. J Nephrol 36(4):969–978. https://doi.org/10.1007/s40620-022-01563-y
Article CAS PubMed Google Scholar
Evenepoel P, Goffin E, Meijers B, Kanaan N, Bammens B, Coche E, Claes K, Jadoul M (2015) Sclerostin serum levels and vascular calcification progression in prevalent renal transplant recipients. J Clin Endocrinol Metab 100(12):4669–4676. https://doi.org/10.1210/jc.2015-3056
Article CAS PubMed Google Scholar
Koh HB, Ryu JH, Kim SS, Kim MG, Park JB, Kim CD, Kang KP, Ro H, Han SY, Huh KH, Yang J (2023) Association between sclerostin levels and vascular outcomes in kidney transplantation patients. J Nephrol 36(7):2091–2109. https://doi.org/10.1007/s40620-023-01732-7
Article CAS PubMed Google Scholar
Zeng S, Slowinski T, Pommer W, Hasan AA, Gaballa MMS, Lu Y, Krämer BK, Hocher B (2020) Sclerostin is an independent risk factor for all-cause mortality in kidney transplant recipients. Clin Exp Nephrol 24(12):1177–1183. https://doi.org/10.1007/s10157-020-01956-y
Article CAS PubMed PubMed Central Google Scholar
Coban M, Okten S (2020) The correlation between sclerostin and bone mineral density in renal transplant recipients. Nefrologia (Engl Ed) 40(5):506–513. https://doi.org/10.1016/j.nefro.2020.04.009
Ferreira AC, Mendes M, Silva C, Cotovio P, Aires I, Navarro D, Caeiro F, Salvador R, Correia B, Cabral G, Nolasco F, Ferreira A (2021) Bone densitometry versus bone histomorphometry in renal transplanted patients: a cross-sectional study. Transplant Int 34(6):1065–1073. https://doi.org/10.1111/tri.13888
Venner JM, Hidalgo LG, Famulski KS, Chang J, Halloran PF (2015) The molecular landscape of antibody-mediated kidney transplant rejection: evidence for NK involvement through CD16a Fc receptors. Am J Transplant 15(5):1336–1348. https://doi.org/10.1111/ajt.13115
Article CAS PubMed Google Scholar
Ferreira AC, Mendes M, Silva C, Cotovio P, Aires I, Navarro D, Caeiro F, Ramos R, Salvador R, Correia B, Cabral G, Nolasco F, Ferreira A (2022) Improvement of mineral and bone disorders after renal transplantation. Transplantation 106(5):e251–e261. https://doi.org/10.1097/tp.0000000000004099
Article CAS PubMed PubMed Central Google Scholar
Bonani M, Rodriguez D, Fehr T, Mohebbi N, Brockmann J, Blum M, Graf N, Frey D, Wüthrich RP (2014) Sclerostin blood levels before and after kidney transplantation. Kidney Blood Press Res 39(4):230–239. https://doi.org/10.1159/000355781
Article CAS PubMed Google Scholar
Evenepoel P, Claes K, Meijers B, Laurent MR, Bammens B, Naesens M, Sprangers B, Pottel H, Cavalier E, Kuypers D (2019) Bone mineral density, bone turnover markers, and incident fractures in de novo kidney transplant recipients. Kidney Int 95(6):1461–1470. https://doi.org/10.1016/j.kint.2018.12.024
Marques IDB, Araújo M, Graciolli FG, Dos Reis LM, Pereira RMR, Alvarenga JC, Custódio MR, Jorgetti V, Elias RM, Moysés RMA, David-Neto E (2019) A randomized trial of zoledronic acid to prevent bone loss in the first year after kidney transplantation. J Am Soc Nephrol 30(2):355–365. https://doi.org/10.1681/asn.2018060656
Article CAS PubMed PubMed Central Google Scholar
Brandenburg VM, Verhulst A, Babler A, D’Haese PC, Evenepoel P, Kaesler N (2019) Sclerostin in chronic kidney disease-mineral bone disorder think first before you block it! Nephrol Dial Transplant 34(3):408–414. https://doi.org/10.1093/ndt/gfy129
Article CAS PubMed Google Scholar
Elder GJ (2016) Decreased circulating sclerostin levels in renal transplant recipients with persistent hyperparathyroidism: who’s conducting the orchestra? Transplantation 100(10):2016–2017. https://doi.org/10.1097/tp.0000000000001312
Comments (0)