Omega-3 Attenuates Disrupted Neurotransmission and Partially Protects Metabolic Dysfunction Caused by Obesity in Wistar Rats

Djuricic I, Calder PC (2021) Beneficial outcomes of omega-6 and omega-3 polyunsaturated fatty acids on human health: an update for 2021. Nutrients 13:2421. https://doi.org/10.3390/nu13072421

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chalon S (2006) Omega-3 fatty acids and monoamine neurotransmission. Prostaglandins Leukot Essent Fatty Acids 75:259–269. https://doi.org/10.1016/j.plefa.2006.07.005

Article  CAS  PubMed  Google Scholar 

Devarshi PP, Grant RW, Ikonte CJ, Hazels Mitmesser S (2019) Maternal omega-3 nutrition, placental transfer and fetal brain development in gestational diabetes and preeclampsia. Nutrients 11:1107. https://doi.org/10.3390/nu11051107

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shahidi F, Ambigaipalan P (2018) Omega-3 polyunsaturated fatty acids and their health benefits. Annu Rev Food Sci Technol 9:345–381. https://doi.org/10.1146/annurev-food-111317-095850

Article  CAS  PubMed  Google Scholar 

Liao Y, Xie B, Zhang H et al (2019) Efficacy of omega-3 PUFAs in depression: a meta-analysis. Transl Psychiatry 9:190. https://doi.org/10.1038/s41398-019-0515-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Neto J, Jantsch J, de Oliveira S et al (2022) DHA/EPA supplementation decreases anxiety-like behaviour, but it does not ameliorate metabolic profile in obese male rats. Br J Nutr 128:964–974. https://doi.org/10.1017/S0007114521003998

Article  CAS  PubMed  Google Scholar 

Caballero B (2019) Humans against obesity: Who will win? Adv Nutr 10:S4–S9. https://doi.org/10.1093/advances/nmy055

Article  PubMed  PubMed Central  Google Scholar 

de Vos WM, Tilg H, Van Hul M, Cani PD (2022) Gut microbiome and health: mechanistic insights. Gut 71:1020–1032. https://doi.org/10.1136/gutjnl-2021-326789

Article  CAS  PubMed  Google Scholar 

Aron-Wisnewsky J, Warmbrunn MV, Nieuwdorp M, Clément K (2021) Metabolism and metabolic disorders and the microbiome: the intestinal microbiota associated with obesity, lipid metabolism, and metabolic health—pathophysiology and therapeutic strategies. Gastroenterology 160:573–599. https://doi.org/10.1053/j.gastro.2020.10.057

Article  CAS  PubMed  Google Scholar 

Mengeste AM, Rustan AC, Lund J (2021) Skeletal muscle energy metabolism in obesity. Obesity 29:1582–1595. https://doi.org/10.1002/oby.23227

Article  CAS  PubMed  Google Scholar 

Kawai T, Autieri MV, Scalia R (2021) Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Physiol 320:C375–C391. https://doi.org/10.1152/ajpcell.00379.2020

Article  CAS  PubMed  Google Scholar 

Sabaratnam R, Hansen DR, Svenningsen P (2023) White adipose tissue mitochondrial bioenergetics in metabolic diseases. Rev Endocr Metab Disord. https://doi.org/10.1007/s11154-023-09827-z

Article  PubMed  Google Scholar 

Labban RSM, Alfawaz H, Almnaizel AT et al (2020) High-fat diet-induced obesity and impairment of brain neurotransmitter pool. Transl Neurosci 11:147–160. https://doi.org/10.1515/tnsci-2020-0099

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hersey M, Woodruff JL, Maxwell N et al (2021) High-fat diet induces neuroinflammation and reduces the serotonergic response to escitalopram in the hippocampus of obese rats. Brain Behav Immun 96:63–72. https://doi.org/10.1016/j.bbi.2021.05.010

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Macedo IC, de Freitas JS, da Silva Torres IL (2016) The influence of palatable diets in reward system activation: a mini review. Adv Pharmacol Sci 2016:7238679. https://doi.org/10.1155/2016/7238679

Article  PubMed  PubMed Central  Google Scholar 

Leigh S-J, Kendig MD, Morris MJ (2019) Palatable western-style cafeteria diet as a reliable method for modeling diet-induced obesity in rodents. J Vis Exp. https://doi.org/10.3791/60262

Article  PubMed  Google Scholar 

Spinazzi M, Casarin A, Pertegato V et al (2012) Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat Protoc 7:1235–1246. https://doi.org/10.1038/nprot.2012.058

Article  CAS  PubMed  Google Scholar 

Teixeira PC, Dorneles GP, Santana Filho PC et al (2021) Increased LPS levels coexist with systemic inflammation and result in monocyte activation in severe COVID-19 patients. Int Immunopharmacol 100:108125. https://doi.org/10.1016/j.intimp.2021.108125

Article  CAS  PubMed  PubMed Central  Google Scholar 

Viana RR, Pego AMF, de Oliveira TF et al (2022) Liquid chromatography-tandem mass spectrometry method for simultaneous quantification of neurotransmitters in rat brain tissue exposed to 4’-fluoro-α-PHP. Biomed Chromatogr 36:e5487. https://doi.org/10.1002/bmc.5487

Article  CAS  PubMed  Google Scholar 

Brestoff JR, Wilen CB, Moley JR et al (2021) Intercellular mitochondria transfer to macrophages regulates white adipose tissue homeostasis and is impaired in obesity. Cell Metab 33:270-282.e8. https://doi.org/10.1016/j.cmet.2020.11.008

Article  CAS  PubMed  Google Scholar 

Sarparanta J, García-Macia M, Singh R (2017) Autophagy and mitochondria in obesity and type 2 diabetes. Curr Diabetes Rev 13:352–369. https://doi.org/10.2174/1573399812666160217122530

Article  CAS  PubMed  Google Scholar 

Heinonen S, Jokinen R, Rissanen A, Pietiläinen KH (2020) White adipose tissue mitochondrial metabolism in health and in obesity. Obes Rev 21:e12958. https://doi.org/10.1111/obr.12958

Article  PubMed  Google Scholar 

Pileggi CA, Parmar G, Harper M-E (2021) The lifecycle of skeletal muscle mitochondria in obesity. Obes Rev 22:e13164. https://doi.org/10.1111/obr.13164

Article  CAS  PubMed  Google Scholar 

Chattopadhyay M, Guhathakurta I, Behera P et al (2011) Mitochondrial bioenergetics is not impaired in nonobese subjects with type 2 diabetes mellitus. Metabolism 60:1702–1710. https://doi.org/10.1016/j.metabol.2011.04.015

Article  CAS  PubMed  Google Scholar 

Turner N, Bruce CR, Beale SM et al (2007) Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents. Diabetes 56:2085–2092. https://doi.org/10.2337/db07-0093

Article  CAS  PubMed  Google Scholar 

Garcia-Roves P, Huss JM, Han D-H et al (2007) Raising plasma fatty acid concentration induces increased biogenesis of mitochondria in skeletal muscle. Proc Natl Acad Sci U S A 104:10709–10713. https://doi.org/10.1073/pnas.0704024104

Article  CAS  PubMed  PubMed Central  Google Scholar 

Levak-Frank S, Radner H, Walsh A et al (1995) Muscle-specific overexpression of lipoprotein lipase causes a severe myopathy characterized by proliferation of mitochondria and peroxisomes in transgenic mice. J Clin Invest 96:976–986. https://doi.org/10.1172/JCI118145

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif