Gorman JM (1996) Comorbid depression and anxiety spectrum disorders. Depress Anxiety 4:160–168. https://doi.org/10.1002/(SICI)1520-6394(1996)4:4%3c160::AID-DA2%3e3.0.CO;2-J
Levine J, Cole DP, Chengappa K N,Gershon S (2001) Anxiety disorders and major depression, together or apart. Depress Anxiety 14:94–104. https://doi.org/10.1002/da.1051
Article CAS PubMed Google Scholar
Meltzer-Brody S, Davidson JR (2000) Completeness of response and quality of life in mood and anxiety disorders. Depress Anxiety 12(Suppl 1):95–101. https://doi.org/10.1002/1520-6394(2000)12:1+%3C95::Aid-da14%3E3.0.Co;2-u
Bouwmans CA, Vemer P, van Straten A, Tan SS, Hakkaart-van Roijen L (2014) Health-related quality of life and productivity losses in patients with depression and anxiety disorders. J Occup Environ Med 56:420–424. https://doi.org/10.1097/jom.0000000000000112
Article CAS PubMed Google Scholar
Dow-Edwards D (2020) Sex differences in the interactive effects of early life stress and the endocannabinoid system. Neurotoxicol Teratol 80:106893. https://doi.org/10.1016/j.ntt.2020.106893
Article CAS PubMed Google Scholar
Williams LM, Gatt JM, Schofield PR, Olivieri G, Peduto A, Gordon E (2009) Negativity bias’ in risk for depression and anxiety: brain-body fear circuitry correlates, 5-HTT-LPR and early life stress. NeuroImage 47:804–814. https://doi.org/10.1016/j.neuroimage.2009.05.009
Article CAS PubMed Google Scholar
Chu DA, Williams LM, Harris AW, Bryant R A,Gatt JM (2013) Early life trauma predicts self-reported levels of depressive and anxiety symptoms in nonclinical community adults: relative contributions of early life stressor types and adult trauma exposure. J Psychiatr Res 47:23–32. https://doi.org/10.1016/j.jpsychires.2012.08.006
Willner P (2017) The chronic mild stress (CMS) model of depression: history, evaluation and usage. Neurobiol Stress 6:78–93. https://doi.org/10.1016/j.ynstr.2016.08.002
Willner P (2005) Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 52:90–110. https://doi.org/10.1159/000087097
Article CAS PubMed Google Scholar
Marcolongo-Pereira C, Castro F, Barcelos RM, Chiepe K, Rossoni Junior JV, Ambrosio RP, Chiarelli-Neto O, Pesarico AP (2022) Neurobiological mechanisms of mood disorders: stress vulnerability and resilience. Front Behav Neurosci 16:1006836. https://doi.org/10.3389/fnbeh.2022.1006836
Article CAS PubMed PubMed Central Google Scholar
Chen C (2022) Recent advances in the study of the comorbidity of depressive and anxiety disorders. Adv Clin Exp Med 31:355–358. https://doi.org/10.17219/acem/147441
Dranovsky A, Hen R (2006) Hippocampal neurogenesis: regulation by stress and antidepressants. Biol Psychiatry 59:1136–1143. https://doi.org/10.1016/j.biopsych.2006.03.082
Martin DM, McClintock S M,Forster JJ, Lo TY, Loo CK (2017) Cognitive enhancing effects of rTMS administered to the prefrontal cortex in patients with depression: a systematic review and meta-analysis of individual task effects. Depress Anxiety 34:1029–1039. https://doi.org/10.1002/da.22658
Wardenaar KJ, Vreeburg SA, van Veen T, Giltay EJ, Veen G, Penninx BW, Zitman FG (2011) Dimensions of depression and anxiety and the hypothalamo-pituitary-adrenal axis. Biol Psychiatry 69:366–373. https://doi.org/10.1016/j.biopsych.2010.09.005
Aslam H, Green J, Jacka F N,Collier F,Berk M, Pasco J, Dawson SL (2020) Fermented foods, the gut and mental health: a mechanistic overview with implications for depression and anxiety. Nutr Neurosci 23:659–671. https://doi.org/10.1080/1028415x.2018.1544332
Article CAS PubMed Google Scholar
Peciña M, Sikora M, Avery E T,Heffernan J,Peciña S,Mickey BJ, Zubieta JK (2017) Striatal dopamine D2/3 receptor-mediated neurotransmission in major depression: implications for anhedonia, anxiety and treatment response. Eur Neuropsychopharmacol 27:977–986. https://doi.org/10.1016/j.euroneuro.2017.08.427
Article CAS PubMed PubMed Central Google Scholar
McTeague LM, Rosenberg BM, Lopez JW, Carreon DM, Huemer J, Jiang Y,Chick C F,Eickhoff SB, Etkin A (2020) Identification of common neural circuit disruptions in emotional Processing Across Psychiatric disorders. Am J Psychiatry 177:411–421. https://doi.org/10.1176/appi.ajp.2019.18111271
Article PubMed PubMed Central Google Scholar
Ressler KJ, Mayberg HS (2007) Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat Neurosci 10:1116–1124. https://doi.org/10.1038/nn1944
Article CAS PubMed PubMed Central Google Scholar
Williams LM (2017) Defining biotypes for depression and anxiety based on large-scale circuit dysfunction: a theoretical review of the evidence and future directions for clinical translation. Depress Anxiety 34:9–24. https://doi.org/10.1002/da.22556
Labonté B, Engmann O,Purushothaman I,Menard C, Tan C,Scarpa JR, Moy G, Loh YE, Cahill M et al (2017) Sex-specific transcriptional signatures in human depression. Nat Med 23:1102–1111. https://doi.org/10.1038/nm.4386
Article CAS PubMed PubMed Central Google Scholar
Liao J, Mi X,Zeng G,Wei Y,Dai X,Ye Q,Chen X, Zhang J (2023) Circuit-wide proteomics profiling reveals brain region-specific protein signatures in the male WKY rats with endogenous depression. J Affect Disord 320:98–107. https://doi.org/10.1016/j.jad.2022.09.086
Article CAS PubMed Google Scholar
Gerstner N, Krontira AC, Cruceanu C,Roeh S, Rex-Haffner M, Schmidt MV, Binder EB, Knauer-Arloth J (2022) DiffBrainNet: Differential analyses add new insights into the response to glucocorticoids at the level of genes, networks and brain regions. Neurobiol Stress 21:100496. https://doi.org/10.1016/j.ynstr.2022.100496
Article CAS PubMed PubMed Central Google Scholar
Tang M, Huang H, Li SZM, Liu Z, Huang R, Liao W, Xie P, Zhou J (2019) Hippocampal proteomic changes of susceptibility and resilience to depression or anxiety in a rat model of chronic mild stress. Transl Psychiatry 9:260. https://doi.org/10.1038/s41398-019-0605-4
Article CAS PubMed PubMed Central Google Scholar
Liao W, Liu Y, Wang L, Huang R, Fang C,Xie P, Zhou J (2021) Chronic mild stress-induced protein dysregulations correlated with susceptibility and resiliency to depression or anxiety revealed by quantitative proteomics of the rat prefrontal cortex. Transl Psychiatry 11:143. https://doi.org/10.1038/s41398-021-01267-0
Article CAS PubMed PubMed Central Google Scholar
Cai X, Yang C, Chen J, Gong W,Yi F, Liao W, Huang R, Xie L, Zhou J (2021) Proteomic insights into susceptibility and resistance to chronic-stress-Induced Depression or anxiety in the rat striatum. Front Mol Biosci 8:730473. https://doi.org/10.3389/fmolb.2021.730473
Article CAS PubMed PubMed Central Google Scholar
Liu D, Cai X, Wang LYF, Liao W, Huang R, Fang C, Zhou J (2021) Comparative proteomics of rat olfactory bulb reveal insights into susceptibility and resiliency to chronic-stress-induced depression or anxiety. Neuroscience 473:29–43. https://doi.org/10.1016/j.neuroscience.2021.08.012
Article CAS PubMed Google Scholar
Gong W, Liao W, Fang C,Liu Y, Xie H,Yi F, Huang R, Wang L, Zhou J (2021) Analysis of chronic mild stress-Induced Hypothalamic Proteome: identification of protein dysregulations Associated with vulnerability and resiliency to depression or anxiety. Front Mol Neurosci 14:633398. https://doi.org/10.3389/fnmol.2021.633398
Article CAS PubMed PubMed Central Google Scholar
Tian F, Liu D, Chen JLW, Gong W, Huang R, Xie L, Yi F, Zhou J (2021) Proteomic response of rat pituitary under chronic mild stress reveals insights into vulnerability and resistance to anxiety or depression. Front Genet 12:751999. https://doi.org/10.3389/fgene.2021.751999
Article CAS PubMed PubMed Central Google Scholar
Li J, Zhang J, Hou W,Yang X,Liu X,Zhang Y,Gao M, Zong MDZ, Liu Z et al (2022) Metabolic control of histone acetylation for precise and timely regulation of minor ZGA in early mammalian embryos. Cell Discov 8:96. https://doi.org/10.1038/s41421-022-00440-z
Comments (0)