Comprehensive study on physicochemical properties of materials based on titanium suboxides

C. Wang, M. Wang, K. Xie, Q. Wu, L. Sun, Z. Lin, C. Lin, Room temperature one-step synthesis of microarrays of N-doped flower-like anatase TiO2 composed of well-defined multilayer nanoflakes by Ti anodization, Nanotechnology, 22(30), 305607 (2011); https://doi.org/10.1088/0957-4484/22/30/305607.

K. Inoue, A. Matsuda, G. Kawamura, Tube length optimization of titania nanotube array for efficient photoelectrochemical water splitting, Scientific Reports, 13, 103 (2023); https://doi.org/10.1038/s41598-022-27278-5.

H. Martinez, J. Neira, A. A. Amaya, E. A. Páez-Mozo, F. Martinez Ortega, Selective photooxidation of valencene and thymol with nano-TiO2 and O2 as oxidant, Molecules, 28(9), 3868 (2023); https://doi.org/10.3390/molecules28093868.

G. Cha, S. Ozkan, I. Hwang, A. Mazare, P. Schmuki, Li+ doped anodic TiO2 nanotubes for enhanced efficiency of dye-sensitized solar cells, Surface Science, 718, 122012 (2022); https://doi.org/10.1016/j.susc.2021.122012.

J. Park, S. Kim, G. Lee, J. Choi, RGO-coated TiO2 microcones for high-rate lithium-ion batteries, ACS Omega, 3(8), 10205 (2018); https://doi.org/10.1021/acsomega.8b00926.

H. Yoo, G. Lee, J. Choi, Binder-free SnO2-TiO2 composite anode with high durability for lithium-ion batteries, RSC Advances, 9, 6589 (2019); https://doi.org/10.1039/C8RA10358E.

Y.-T. Kim, J. H. Youk, J. Choi, Inverse-direction growth of TiO2 microcones by subsequent anodization in HClO4 for increased performance of lithium-ion batteries, ChemElectroChem, 7(5), 1057 (2020); https://doi.org/10.1002/celc.202000114.

N. Rodriguez-Barajas, U. de Jesús Martin-Camacho, A. Pérez-Larios, Mechanisms of metallic nanomaterials to induce an antibacterial effect, Current Topics in Medicinal Chemistry, 22(30), 2506 (2022); http://dx.doi.org/10.2174/1568026622666220919124104.

K. M. Chahrour, P. C. Ooi, A. M. Eid, A. Abdel Nazeer, M. Madkour, C. F. Dee, M. F. M. R. Wee, A. A. Hamzah, Synergistic effect of bi-phased and self-doped Ti+3 on anodic TiO2 nanotubes photoelectrode for photoelectrochemical sensing, Journal of Alloys and Compounds, 900, 163496 (2022); https://doi.org/10.1016/j.jallcom.2021.163496.

O. I. Kasian, T. V. Luk’yanenko, P. Yu. Demchenko, R. E. Gladyshevskii, R. Amadelli, A. B. Velichenko, Electrochemical properties of thermally treated platinized Ebonex® with low content of Pt, Electrochimica Acta, 109, 630 (2013); https://doi.org/10.1016/j.electacta.2013.07.162.

M. Cerro-Lopez, Y. Meas-Vong, M. A. Mendez-Rojas, C. A. Martínez-Huitle, M. A. Quiroz, Formation and growth of PbO2 inside TiO2 nanotubes for environmental applications, Applied Catalysis B: Environment and Energy, B, 144, 174 (2014); https://doi.org/10.1016/j.apcatb.2013.07.018.

V. Knysh, O. Shmychkova, T. Luk’yanenko, A. Velichenko, Template synthesis for the creation of photo- and electrocatalysts, Voprosy Khimii i Khimicheskoi Tekhnologii, 3, 86 (2023); https://doi.org/10.32434/0321-4095-2023-148-3-86-93.

M. Wtulich, M. Szkoda, G. Gajowiec, M. Gazda, K. Jurak, M. Sawczak, A. Lisowska-Oleksiak, Hydrothermal cobalt doping of titanium dioxide nanotubes towards photoanode activity enhancement, Materials, 14, 1507 (2021); https://doi.org/10.3390/ma14061507.

F. Riboni, N. T. Nguyen, S. So, P. Schmuki, Aligned metal oxide nanotube arrays: key-aspects of anodic TiO2 nanotube formation and properties, Nanoscale Horizons, 1, 445 (2016); https://doi.org/10.1039/C6NH00054A.

J. M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, TiO2 nanotubes: selforganized electrochemical formation, properties and applications, Current Opinion in Solid State and Materials Science, 11(1/2), 3 (2007); https://doi.org/10.1016/j.cossms.2007.08.004.

O. Shmychkova, D. Girenko, A. Velichenko, Noble metals doped tin dioxide for sodium hypochlorite synthesis from low concentrated NaCl solutions, Journal Chemical Technology and Biotechnology, 97(4), 903 (2022); https://doi.org/10.1002/jctb.6973.

W. Kraus, G. Nolze, POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns, Journal of Applied Crystallography, 29, 301 (1996).

The Rietveld Method. IUCr Monographs on Crystallography, Ed. R. A. Young (University Press, Oxford 1995).

J. Rodriguez-Carvajal, Recent developments of the Program FULLPROF in Commission on Powder Diffraction (IUCr), Newsletter, 26, 12 (2001).

J. Rodriguez-Carvajal, T. Roisnel, Line broadening analysis using FullProf: determination of microstructural properties, Materials Science Forum, 443-444, 123 (2004); https://doi.org/10.4028/www.scientific.net/MSF.443-444.123.

A. Velichenko, V. Kordan, O. Shmychkova, V. Knysh, P. Demchenko, The effect of Ti/TiO2 treatment on morphology, phase composition and semiconductor properties, Voprosy Khimii i Khimicheskoi Tekhnologii, 4, 18 (2022); https://doi.org/10.32434/0321-4095-2022-143-4-18-23.

O. K. Varghese, D. Gong, M. Paulose, C. A. Grimes, E. C. Dickey, Crystallization and high-temperature structural stability of titanium oxide nanotube arrays, Journal of Materials Research, 18, 156 (2003); https://doi.org/10.1557/JMR.2003.0022.

G. Qi, X. Wang, J. Zhao, Ch. Song, Y. Zhang, F. Ren, N. Zhang, Fabrication and characterization of the porous Ti4O7 reactive electrochemical membrane, Frontiers in Chemistry, 9, 833024 (2021); https://doi.org/10.3389/fchem.2021.833024.

D. P. S. Palma, R. Z. Nakazato, E. N. Codaro, H. A. Acciari, Morphological and structural variations in anodic films grown on polished and electropolished titanium substrates, Materials Research, 22, 1 (2019); https://doi.org/10.1590/1980-5373-MR-2019-0362.

A. Mazzarolo, M. Curioni, A. Vicenzo, P. Skeldon, G. E. Thompson, Anodic growth of titanium oxide: Electrochemical behaviour and morphological evolution, Electrochimica Acta, 75, 288 (2012); https://doi.org/10.1016/j.electacta.2012.04.114.

O. Shmychkova, T. Luk’yanenko, R. Amadelli, A. Velichenko, Electrodeposition of Ni2+-doped PbO2 and physicochemical properties of the coating, Journal of Electroanalytical Chemistry, 774, 88 (2016); https://doi.org/10.1016/j.jelechem.2016.05.017.

Comments (0)

No login
gif