Association of ADAM family members with proliferation signaling and disease progression in multiple myeloma

Rajkumar SV. Multiple myeloma: 2022 update on diagnosis, risk stratification, and management. Am J Hematol. 2022;97:1086–107.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar SK, Dispenzieri A, Lacy MQ, Gertz MA, Buadi FK, Pandey S, et al. Continued improvement in survival in multiple myeloma: changes in early mortality and outcomes in older patients. Leukemia. 2014;28:1122–8.

Article  CAS  PubMed  Google Scholar 

Durie BGM, Hoering A, Abidi MH, Rajkumar SV, Epstein J, Kahanic SP, et al. Bortezomib with lenalidomide and dexamethasone versus lenalidomide and dexamethasone alone in patients with newly diagnosed myeloma without intent for immediate autologous stem-cell transplant (SWOG S0777): a randomised, open-label, phase 3 trial. Lancet. 2017;389:519–27.

Article  CAS  PubMed  Google Scholar 

Kawano Y, Moschetta M, Manier S, Glavey S, Görgün GT, Roccaro AM, et al. Targeting the bone marrow microenvironment in multiple myeloma. Immunol Rev. 2015;263:160–72.

Article  PubMed  Google Scholar 

Karamanos NK, Theocharis AD, Piperigkou Z, Manou D, Passi A, Skandalis SS, et al. A guide to the composition and functions of the extracellular matrix. FEBS J. 2021;288:6850–912.

Article  CAS  PubMed  Google Scholar 

Evers M, Schreder M, Stühmer T, Jundt F, Ebert R, Hartmann TN, et al. Prognostic value of extracellular matrix gene mutations and expression in multiple myeloma. Blood Cancer J. 2023;13:43.

Article  PubMed  PubMed Central  Google Scholar 

Edwards DR, Handsley MM, Pennington CJ. The ADAM metalloproteinases. Mol Asp Med. 2008;29:258–89.

Article  CAS  Google Scholar 

Rocks N, Paulissen G, Hour ME, Quesada F, Crahay C, Guéders MM, et al. Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie. 2008;90:369–79.

Article  CAS  PubMed  Google Scholar 

Conrad C, Benzel J, Dorzweiler K, Cook L, Schlomann U, Zarbock A, et al. ADAM8 in invasive cancers: links to tumor progression, metastasis, and chemoresistance. Clin Sci. 2019;133:83–99.

Article  CAS  Google Scholar 

Duffy MJ, McKiernan E, O’Donovan N, McGowan PM. Role of ADAMs in Cancer Formation and Progression. Clin Cancer Res. 2009;15:1140–4.

Article  CAS  PubMed  Google Scholar 

Schlomann U, Koller G, Conrad C, Ferdous T, Golfi P, Garcia AM, et al. ADAM8 as a drug target in pancreatic cancer. Nat Commun. 2015;6:6175.

Article  PubMed  Google Scholar 

Awan T, Babendreyer A, Mahmood Alvi A, Düsterhöft S, Lambertz D, Bartsch JW, et al. Expression levels of the metalloproteinase ADAM8 critically regulate proliferation, migration and malignant signalling events in hepatoma cells. J Cell Mol Med. 2021;25:1982–99.

Article  CAS  PubMed  Google Scholar 

Qu H, Mao M, Wang K, Mu Z, Hu B. Knockdown of ADAM8 inhibits the proliferation, migration, invasion, and tumorigenesis of renal clear cell carcinoma cells to enhance the immunotherapy efficacy. Transl Res. 2024;266:32–48.

Article  CAS  PubMed  Google Scholar 

Grützmann R, Lüttges J, Sipos B, Ammerpohl O, Dobrowolski F, Alldinger I, et al. ADAM9 expression in pancreatic cancer is associated with tumour type and is a prognostic factor in ductal adenocarcinoma. Br J Cancer. 2004;90:1053–8.

Article  PubMed  PubMed Central  Google Scholar 

Shintani Y, Higashiyama S, Ohta M, Hirabayashi H, Yamamoto S, Yoshimasu T, et al. Overexpression of ADAM9 in non-small cell lung cancer correlates with brain metastasis. J. Cancer Res. 2004;64:4190–6.

Article  CAS  PubMed  Google Scholar 

Mazzocca A, Coppari R, De Franco R, Cho J-Y, Libermann TA, Pinzani M, et al. A Secreted Form of ADAM9 Promotes Carcinoma Invasion through Tumor-Stromal Interactions. Cancer Res. 2005;65:4728–38.

Article  CAS  PubMed  Google Scholar 

Zhou R, Cho WCS, Ma V, Cheuk W, So YK, Wong SCC, et al. ADAM9 Mediates Triple-Negative Breast Cancer Progression via AKT/NF-κB Pathway. Front Med. 2020;7:214.

Article  Google Scholar 

Li J, Ji Z, Qiao C, Qi Y, Shi W. Overexpression of ADAM9 Promotes Colon Cancer Cells Invasion. J Investigative Surg. 2013;26:127–33.

Article  Google Scholar 

Liu CM, Hsieh CL, He YC, Lo SJ, Liang JA, Hsieh TF, et al. In vivo targeting of ADAM9 gene expression using lentivirus-delivered shRNA suppresses prostate cancer growth by regulating REG4 dependent cell cycle progression. PloS One. 2013;8:e53795.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dong DD, Zhou H, Li G. ADAM15 targets MMP9 activity to promote lung cancer cell invasion. Oncol Rep. 2015;34:2451–60.

Article  CAS  PubMed  Google Scholar 

Lorenzatti Hiles G, Bucheit A, Rubin JR, Hayward A, Cates AL, Day KC, et al. ADAM15 Is Functionally Associated with the Metastatic Progression of Human Bladder Cancer. PloS One. 2016;11:e0150138.

Article  PubMed  PubMed Central  Google Scholar 

Xu JH, Guan YJ, Zhang YC, Qiu ZD, Zhou Y, Chen C, et al. ADAM15 correlates with prognosis, immune infiltration and apoptosis in hepatocellular carcinoma. Aging. 2021;13:20395–417.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoelzinger DB, Quinton SJ, Walters DK, Tschumper RC, Jelinek DF. Proteomic and Biological Analysis of Myeloma Cell Derived Extracellular Vesicles. Blood. 2018;132:5605.

Article  Google Scholar 

Karadag A, Zhou M, Croucher PI. ADAM-9 (MDC-9/meltrin-γ), a member of the adisintegrin and metalloproteinase family, regulates myeloma-cell–induced interleukin-6 production in osteoblasts by direct interaction with the αvβ5 integrin. Blood. 2006;107:3271–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bret C, Hose D, Reme T, Kassambara A, Seckinger A, Meißner T, et al. Gene expression profile of ADAMs and ADAMTSs metalloproteinases in normal and malignant plasma cells and in the bone marrow environment. Exp Hematol. 2011;39:546–57.e8.

Article  CAS  PubMed  Google Scholar 

Steinbrunn T, Chatterjee M, Bargou RC, Stühmer T. Efficient Transient Transfection of Human Multiple Myeloma Cells by Electroporation – An Appraisal. PloS One. 2014;9:e97443.

Article  PubMed  PubMed Central  Google Scholar 

Weißbach S, Heredia-Guerrero SC, Barnsteiner S, Großhans L, Bodem J, Starz H, et al. Exon-4 Mutations in KRAS Affect MEK/ERK and PI3K/AKT Signaling in Human Multiple Myeloma Cell Lines. Cancers. 2020;12:455.

Article  PubMed  PubMed Central  Google Scholar 

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

Article  PubMed  PubMed Central  Google Scholar 

Bache S, Wickham H. magrittr: A Forward-Pipe Operator for R. R package version 2.0.3. 2022. https://CRAN.Rproject.org/package=magrittr

Wickham H, Chang W, Wickham. MHJCedvutgogV. Package ‘ggplot2’. 2016;2:1–189.

Google Scholar 

Blighe K, Rana S, Lewis MJE. EnhancedVolcano: Publication-ready volcano plots with enhanced colouring and labeling. https://github.com/kevinblighe 2018.

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. J Proc Natl Acad Sci. 2005;102:15545–50.

Article  CAS  Google Scholar 

Leich E, Schreder M, Pischimarov J, Stühmer T, Steinbrunn T, Rudelius M, et al. Novel molecular subgroups within the context of receptor tyrosine kinase and adhesion signalling in multiple myeloma. Blood Cancer J. 2021;11:51.

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif